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1 1

1 Measures

1.1  Outer measure on R

1.1.1  Definition & good properties of outer measure

1.7 The outer measure[ii Liii

P = lnf{Z O |1

of A C R, with

, is an open cover of A}

b-a ifdla&belR:a<bAl=(ab)
£|:: (0] ifl =
00 ifda € [—00,00) : | = +(a, 00)

the length of an interval | C R
Properties (outer measure’s) 1. fiycountable CcR = ©

2. fiyacBcr < B

3. i a = Pip Vtranslation (t + A) of ACRbyte R
4. ﬁUﬁ;/\k < Zﬁom I'ol/\k V{Ak c [R}Eoﬂ

Proof. 1. Ye > o, an open cover {Ik =+ (‘e'e)/zk};o of C = {c )i,
=1

_ €'s arbitrariness
) = 26

= fic < ZEOZ‘l (glk =
2. B's every cover covers A.

3. {, is translational invariant (by any distance t) Yinterval I.

MEASURES

4. Ye > o, pick an open cover {Jk}oo YAz, L2 by, — oy € [0, . Then
PR AEUE: (1= Ui ez i [ UR U fa < 2k L B < Lk Pacte -

Remark. » Q C Ris countable = fiq = 0

o properties 1—2
® Uy 0.
¥SCR, us>o0 A @<S

1.1.2 Outer measure of compact interval

1.1 fipyy=b-ava&beR:a<b

PI’OOf. 1. Ve >o, Ha,b]c(a—€,b+e)UpugU---=(a—€,b+e) < H(a—e,bre) = b-a+t2e

(o]

2. (a) By HeiNe-BoreL's theorem, every open cover {l,}.” , of a closed bounded
[a,b] € R has a finite subcover {l }i_, (b) Prove ) i_ /, >b —a by induction on

ne Z>0' Then ZE):_I Elk > Zk=1 Elk > b —a= ﬁ[a,b] > b —4d []
Remark. ﬁ(a,b)gR = ﬁ(a,b] = ﬁ[a,b] = ﬁ[a,b)- '
1.2 Everynontrivial (i.e. Ja & b € | :a < b) interval | C R is uncountable'”! |

5 = DI b Vsequence (6, = er,
IR = [~00,00] = R ¥ {00}, with R = (~c0, 00), and W a disjoint union

" igab) = filap) =b-2a>0



1.2 MEASURABLE SPACES & MAPS 2

1.1.3 Nonadditivity of outer meansure

1.3 AA& B C R : fiaup # fin + fig N

Proof. Partition [-1,1] into equivalence classes [a] := {b € [-1,1]|a-b € Q},
and pick V C [-1,1] : [V [a]| = 1 Va € [-1,1]. Then {adee, =[-2,2]NQ
= [-1, 1] C Wi, (g + V) € [-3, 3]

mathematical induction

= fiaq) < g 2 gy = | (G| Ay <
Hl-1,1]1 = P, (q+V) i inonfint s VABCR Zk—1 Hq +v {qk}k=1 KV = Hl33]

=2>0 =jiy o =6<0c0

= contradiction: 0 < co-(fiy =0) =0 ]

1.2 Measurable spaces & maps

1.2.1  Motivation & definition of o-algebra

A
1.4 2R = {S}s g =, Ryo:

R’s power set

1. y) = {,Yopenintervall C R

2. P A = Lices Bay VA S REZ,
3. Up = PAYACRVEER 0

Proof. u has all fi's properties used to prove theorem 1.3 [
1.2 8§ C 2Xisa o-algebra on a set X if

1. X\Ee€ 8YE€§

2. JeS(e= X=X\@€J)

de Morgan’s laws

3. V{Ex € ShZ,, Uil Ex € 8 ( > Nz B = X\UiZ, (X\Ex) € 8),

(X, 8) is then called a measurable space, and E € S measurable sets o
E.g. {, X} and 2X are o-algebras on X.

1.5 (se {8'C2X | 8" is a o-algebra on X containing A) 8 is the smallest 0 -algebra on X containing

A C 2% [
Examples (of smallest o-algebras)

1. {E € X | E countable v X\E countable} on X containing {{x}},x-
2. {&,R,(0,1),Ry5, R, WR,,,R_,,R,,;,R.;} on R containing {(o, 1), R.,}.

1.2.2 BOREL’s subsets of R

1.3 The set B of Borel’s B C R is the smallest o-algebra on R containing all open
GCR L
Examples (of B € %) ® Every closed set, every countable {r, € R}, ., and every
half-open interval

fo. . . .o
° {r € R ‘ R— R is continuous at r} as an open-set intersection is ‘BoREL.

M)\/| denotes the order of a set V
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1.2.3 Inverse images of measurable maps are measurable

f .
1.4 X— R is measurable on a measurable space (X, 8) if f,p.q € st o

E.g. * The only measurable X—f> R on the measurable space (X, {@,X}) are con-
stant maps.

. EveryX—f> R is measurable on the measurable space (X, 2%).

f
e R— Ris measurable on the measurable space (R, {@, R, R_,, R,,}) iff fis con-

stant respectively on R_, and on R,

o ifxeE [ e
E ifog B>
X\E ifoeB21
X ifoeB>n
%) ifogB 2 1.

)ES [ |

ifxeE
* A characteristic map X 25 R of E C X with xpyxex = {1 i } .

urable on a measurable space (X,S) iffE €8 < Xxeper =

f
1.6 X— R is measurable on a measurable space (X, 8) & fivaeR o0

Proof. {A CR |fy' € 8} is a o-algebra containing % O]

Remark. The collection ({R..,}..g in the condition can be re-
placed by any AC2R: B C the smallest o-algebra containing A.

Eg. A= {(p,q]}p’qu V= {(q,z]}quZeZ vV={(q,q9+ ‘I)}qu V= {qu}qu etc.
1.7 {E € 8}pcx = {EN X'}gegisao-algebraon X' € § Vo-algebra § C 2%

f
1.5 YX C R, X— R is Borel-measurable if f,g_g € B

f
1.8 Every continuous B — R is 9B-measurable VB € 9B

Proof. fj o) = (Uber (b= 85,b+8))NB e B

& fypeg > a0, > 0 fyye(bosy brsy)nB > @ o
f
1.9 Every increasing B— R is R-measurable VB € R |
b=inffr—R1
Proof. f(_\v;laerR o) ——=R.,,NBe®B O]

of f
7.70 X g—) R is measurable on a measurable space (X, S) V S-measurable X — R

YV B-measurableY = R :Y 2 fy ol

E.g. X5 R is measurable on a measurable space (X, 8) = so are —f, ,, |f|, * etc.

iy x £, Y, the inverse image f,' := {x € X | f, € A} = X\f;iA of ACY. Besides, f5! =un Opeufa’ VA C2Y,

1
OAeA

. ; g
(gofNypcy = g VY S Z

- 6 E—-xp —
iy measurable space (X, 8) ¥x € X, Dirac’s measure (cf. definition 1.7) 8 N R.o
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f&
7.171 X —g> R are measurable on a measurable space (X, 8) =soaref+ g, fg and f/g
(9y,ex # O inthe quotient) H
( _
Proof. fq = (F9)~F-g*[ (f+ 9)(vacroe) = Usee (frl, VIR a_q) €8s O
f o0

1.72 3fi_ .yxex fOr a sequence {X = fR} of measurable maps on a measurable

k=1
x> Fi oo

space (X 8) = S-measurable X T R, |

Pl’OOf \/aerRoo U)O; U;oﬂ mﬁim fl:;fRNp/, €3 u
)

£ —
1.6 X— R is measurable on a measurable space (X, 8) if f ; — € 8, where B C R

is Borel’s set if B N R € 9% (and & is the collection of all such B) o
o (o)
1.13 A sequence {X =5 TR} of measurable maps on a measurable space (X, 8)
k=1
g&h
= S-measurable X LR Fyxex = lnf{fk k. , hygex = SUP (5. B
Proof. gy,x = — SUP (i > h(_\;aerRoo Ure, fo krR>a €§ N

1.3 Measures & their properties

1.7 8 4 ﬁzo is a measure on a measurable space (X, S) if 7N Y He,

V{E, € 8}i2,. (X, 8, ) is then called a measure space [

Remark. pe_pupugy... = Be + ) kes Bo = P = O.
1.14 Y 'measure space (X, S, y) V{E, € 8},

HE, <0

1. E, C E2:>l'£E1 S M, A Be\E, = ME, ~ M,

2. Py B S Lk M
3. Bvkez, € Bkin = HUS B = HE
4. Bykezy 2 Bkin A e, <0 U g = By,

5. l"EEmE <°°=>FEUE—P‘E + HE, — HE u
Proof. 1. (a) pe,—g,w(E,\E,) = B, T BE,\E, 2 M,

(b) pe, <00 = pe, —pe, > pe, —pe, = 0

00 . k—1 =
2. KR Ee=l, (E\Dk) = > ke (/”Ek\Dk < /uEk) with D\,kEZ U
3. Say pe,,, < O aS otherwise both sides of the equation are co. Let E;, = &,
— k—oo . _ .
FUE’Z" Ek:@}i" (EJ\EJ_1) B (Z Z )( \Ej—1 o }AEJ FEj—1) - }'{Ek—wo

property 3
4o Be, T B2 BT HE\NR EB=UR, (BEN\E) = HE\Eow — KE, T PR

5 HME,UE=[W_, (E\E)]w [Zk 1 (#Ek\E M, — ME)] + Mg = e, + e, — P U

[Viii]x_f> IR is measurable on a measurable space (X,S) &= f(—1 €8

Vaeﬁ,oo]
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1.4 LEBESGUE's measure

1.15 fiass = fiyacr + PvBess H
Proof. Need to show fiaup > fia + fig.

1. flaws = PvACR T Fivopen BcR  SaY fig < 0.

(a) If Bis an open interval (a,b) C R, then Yopen cover

{a + (-ee) 4 b + (_6'6)/4} U{Ik N [R<a}ﬁ°: W { k ﬂ_(a b)} {—Ik N [R>b}k_

Ik Kk Lk

lo

B 70+Z (b, + 0, )+ Y2 b, = > G+
LUk Li)2 , 2A ! k=1 \"J T "Ly k=1 *Ky Paws = Fia + ip-

2 fip >fig

of AWB, Y2, 0

(b) If B = ¥, I for some open sequence {Il € R}, then
Fimon 2 iy \yrzto) = Hpt Y by = fiass = fia + (Li, b, > fis)-

by property (a) and induction on z

2. Pawg = Fvacr + PvclosedBcr Y Open cover {l C fR}E"z1 of AW B,
o0 o Step 1 o o o o
2ica iy 2 Plo=U  1,=(G\B)wB HG\BoA T HB = PA T+ B

G\B=GN(R\B) is open
= fiass = Pa + fip.

3. 2:={LCR|VYe>o0d closed FCL: i ¢ <€} is a o-algebra containing R's
all closed, and thus all open, all BoreL's (and all 0o-outer-measure) subsets  Since
2 (5> @, as @ is both open and closed) is closed under

Countable intersection L, =, L e2ZV{L e2}Z, &Ve>o0
d closed Fyyez , C Ly ﬁLk\Fk < ¢Sk A ﬁLo\(cLosed N, F)=U, (Lo\F)CSUE, (Lk\Fe) < €

Complementation YL c £ Ve >o

(a) If fi < oo, thend closedFCLCopenG:e

> (06/2 > fig — fu) + (¢4 > ﬁL\FOZ fiL — fig) = fic — P
= HG\F2G\L=(R\L2R\G)\(R\G) = H(R\L)\(closed R\G)*

(b) lfﬂL 00, il ez =Ln[-kkleE < OO

step
[R\LVkEZ eEL> |R\L = mk 1 (|R\Lk

N—

4. Ye >0 closed FCB: figr <€ A flavp > fiaur = fia + (fir = fis — fla\r > fis
1.76 dB C R : jig < 0o A Bisnot Borel’s set

Proof. By theorems 1.3, 1.15

1.17 (TR, 9B, ,u) is a measure space

(] |00 |

Proof. ¥{By € R} ., fige g, > ﬁ@tfzw B, Y ken Fa = Py By = Yk, e,

by theorem 1.15 and induction on z

1.8 A C R is Lebesgue-measurable

— dB eR:B CAAjfpag =0
< Ve>odclosedFCA:jfiar<e
& d{closed F, C Al : fia\Ue F = ©
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Hopen G 2 AL, : fin= G\a =0
VYe>odopenG2A:jfiga<e€

10070

I'O‘(—n,n)ﬂA + ﬁ(—n,n)\A =2nVYn € Z>0 [

Fened A\B™ & B*\A&A & R\A €%

Proof. jin\g- = 0 = ﬁ3+\A(

AFCUL, FKEACNZ, GkEG

A\B™)eB=A=B"N[R\(B"\A)]

> fiavk & fiG\A=(R\ADR\G)\(R\G) < € — O* etc. [
Remark. The o-algebra £ in theorem 1.15.3 is the collection of R’s all £-

measurable subsets.
1.18 ([R, <, y) is a measure space (dubbed Lebesgue’s) H

Proof. V{L, € gf}ﬁoﬂ 3 {Bk €ER | L, = By W (Lk\Bk)};om : ﬁLVkeZ>o\Bk =0
Zio:‘l (ﬁBk = ﬁl—k) =

Remark. VA C R with jiy < 00, A€ 2 &= Ve > 031G = =2 G, with G, _,
bounded open intervals: jiag + fig\a < €. Practically, this means that every
B € B with fig < oo is almost a finite disjoint union of bounded open intervals.

theorem 1.17

A e L 2 PR By

1.5 Convergence of measurable maps

1.5.1 Pointwise convergence is almost uniform convergence

(o)

f f
1.9 {X = [R} convergesto X — R
k=1

Pointwise (on X) if fk—)oo;VXGX = fx

Uniformly ifVe >o0dn € Z, : [fyonvxex — K| <€ °

e _[1=KIx| iflx| e [0, K] "
E.g. {[—111] = R | —{ if x| € (1/k,1]}

converdes pointwise

k=1
fix—6, «

but not uniformly to [-1,1] —— R

fi : > , f
1.19 {X — R | fyjez,, continuous at x € X}k converges uniformly to X — R
=1
= f continuous at x |

Proof. Ve >03d6 > o0 ‘fvx’e(x_éﬁé)mx - fx‘ < €, because
|fX’ — fX| < |fX’ — fj;X’ + |'G;X/ — f};X < €,| + |f};X — le VJ € Z>0 Ve’ e (0, 6)

<(5_5,)/2

Hneze o vx”ex—fx”

>

fxl - fn I;XI

fo—f| <

+e'+|f—f| <€ O

Theorem (Ecorov’s) Ymeasure 8 > R, on a measurable space (X,8)IEC X :

& fix— fk—wo;x

f
px\e € [0,Ye >0) A {S—measurable X = [R} converges to X —————— R uni-
k=1
formly on E u

ngfk—f oo 00 _
Prooﬁ fk—>0<>;VX€X — fX N Um:‘l (Am;VnEZ>0 = mk:m gk;z—"/n,“/n)) = x, Whel’e
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Amn € S as X ez Ris §-measurable (by theorems 1.12, 1.11), and {/A\m,n}::’:1 is

. . theorem 1.14.3 .
an increasing sequence ——— Ux = HAr oot 1-€- BX — HAm, ez, < €/7_n. Thus

B\ (B2 Amin) =USs (XA ) S pE- HX\Am < € and {fi}_, converges to f

uniformly onEC A, wnez ,asVe'>o0dne Z,,: |ngeZ> vxet| <V <€’ [
1.5.2 Approximation by simple maps
1.70 A map is simple if it takes only finitely many values [

f=) o, kX
E.g. Asimple X — ™% R (measurable) on a measurable space (X, 8), with

Ck1,...n the distinct values € R, of f,and By, , =f, € 8.

£
1.20 Ymeasurable X— R on a measurable space (X, 8)

f [Se]
3 {simple S-measurableX — R |ijeZ>o;VxeX| < |fj+1;x| < |fx|} converging point-
k=1
wise (uniformly for bounded f) to f |

(o)

M ifAmeZ:|f] e o k]nImm _
E.g. {fk;VxeX = (|fk;x| = {k/ i |f | e (k o<|)) | / signg > 4
X ’ k=1

desired sequence of simple 8-measurable (f ' . € 8 etc. & §-measurable
[0,k]nlmm+ >/2.<
f) maps. |kaeZ>o;VxeX - fx| < Yok if |fx| € [o,k].
f f -
1.21 Ycontinuous F— Ronaclosed F C R 9 continuous R — R :f‘F =f |

E.g. d{open interval I}, : R\F = {2, . 1_“] :=f, V = linear map connecting
k
fp & f. for Iz = %(a,00) V = (b, 0).

1.5.3 BOREL’s measurability is almost continuity

Theorem (LusiN’s) 9R-measurable EL R => Ve >od

® closedFCR:jipp<e

e continuous fR—i R :?‘F = f|F |

Proof. 1. Prove the theorem for (E—f> fR) = ([R—f> [R) 1st.

Co=0

(a) Say f=Y_, cxs, Y k- Sk, Of distinct ¢, ,€R,, and

Bo=R\UL_, Bxc%
disjoint By_, , € ®. Ye > o, theorem 1.8 = 'Yk € {1,...,n} I closed F, C B, C
open Gy : jig\B, < %an > FB\F A G \Fe=(G\BK)W(B\Fi) < T
Fo=R\Ug_, Gk

= closed F

Wik=o Fic * AR\FEUD_. (Gi\F) < €

A f|_ continuous (as f| = ¢ is continuous)
F Fykelo,...

'n}gBk

(b) VB-measurable RS R

(o)

f
i. Theorem1.20 = H{Simple %-measurableR = [R} e oovxex = fx. Ye > o,
k=1
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step 1.(a) = 'Vk € Z,, 3 closed C; C R : jig\c, < %k A fk|Ck continuous’

ole=ne, g continuous: y(R\C) Ue, (R\G) < €/,.

EGcoroV's theorem

ii. Yne Z,, fk—>oo;\/xe(n,n+1) = f, > dB, e R ﬁ(n,n+1)\(BnQ(n,n+1))
< €/2|n|+3 A {fk|Bn}k:1

B, uniformly on CN B,,.

theorem 1.19 .
continuous === (f = fi_,,,)| .z continuous
n

. ka€Z>o (CNBynez, 4 ) CCCCy

= 1‘|D:Unez>o (crs,) COntinuous, where theorem 1.8

= ﬁD\H closedFcDe® < € — ﬁ[R\D:([R\C)U[[R\(Unez>0 Bn)gZ>oU(Un€Z>o (n,n+1)\Bn)]

>0
A ﬁfR\F:(fR\D)Lﬂ(D\F) = ]OJ[R\D + ﬁD\F <€eA f|FQD continuous.

. . fi=xef f
2. Ye > o, consider an extension R T RofE— R, then step 1

= JdclosedCCR: ﬁR\C <eAN ﬂc continuous’
= 'd closed F C CNE: fcnenr < € — firic A fle\F=[(CrE)\FJ9[(E\C)(R\C)] < €

>0
A f|FgE = f|F continuous
theorem 1.21 ] f r
————— ] continuous R— R : f|F =f ]
f i . .
Remark. \§),_, ., Fx— RwithclosedF,_, , < Randcontinuous f| Fy is con-

tinuous.

1.5.4 LEBESGUE's measurability is almost BOREL's measurability

f
1.71 YX C R, X— Ris Lebesgue-measurable if {5 5 € &

f
1.22 YZL-measurable R — R 1 R-measurable R 5 R :ﬁ{xem | 9,26} = ©

o0
theorem 1.20

Proof. £-measurable R R el 20, 3{5|mple £-measurableR 5 TR}
k=1

dnez,, T o e
fkoovxex = fx A fukez,, = Yo G, of distinct ¢_,, ., € R, and disjoint

Aj=s,..n € L. Theorem 1.8 = Vje {1,...,n} IB; e B : ﬁA.\(B‘CA.) =0

J )=
= %-measurable g, ., =2 ., Gxp; ﬁek:{xeR | Ghof] = © Thus
Ik—co;¥xeE fX with ﬁrR\(Ez{xerR ‘ Hgk_)oo;x})gUﬁ; e 0= E]g\v’xefR - <XE ' gk—><>0)x

%-measurable ()CE‘gvkeZ>o)

> B-measurable g : fljer | g f|cUs o = © ]

theorem 1.12
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2 Integration

2.1 Integration with respect to a measure
2.1.1 Integration of nonnegative maps
2.1 {Aj ) | W, Ax = X}jn:Z>0 is an S-partition of a measurable space (X, S) (]

2.2 The integralIfdy = SUP(P{Lf,T:{AJ};; = Zjn;" #AJ ian}' f}S-partitioniPofX of a meas-

Lebesgue’s lower sum
f J— .
urable X— R, , on the measure space (X, S, ,u)['x ] o

2.1 J)(E dp = pg Ymeasure space (X, 8 5 E, y) H

Proof. fXE dy = LXE,BS-partition [EX\E} of X = ME 2 Py, A = Zjn; KA

ACE ACE
em iof _ FAJ IfAJ CE _
= Lj=a | Py A XE = ifA\E= 2| “test6-partiton (A7 of X
E.g. VLEBESGUE's measure fion X, IXQ dji = jig = o, IX[OJ]\Q dfi = foq @ = 1

b:k—b
E.g. fbd,u =) ke b with Z, —5 R.,, and pu the counting measure on

Z>o-[X]

[]

V{Ckeﬁzo};

2.2 I(ZEm kX, ) dp Y i+ Ckig, Vmeasure space (X,S, ) W

Proof. Define f:= Y |_ ccxg,, with {E, := X\lWi_, Ex} U {Ex}i_, an S-partition of
X, and set ¢, = 0. Then

V disjoint sequence {E\€S}p_,

Y ke G, = Lo kb, = Lejgp, < J (= Lios cuxe,) dpe

= L435-partition (A, = [B; = WL, (B = AN )] [A\B)Z, of X

IE Msctipg AN 20
_ n: # . HKz=0 Bj =0
j=1 { A Yo, pa,, if Aj\Bj =

Bj'k¢®

(AJ\BJ)ﬂ(EVkeh,...,n}:HJjE Bj,k)=® {O ifAj\Bj 2

mini6[1,..4,n} Ci ifAJ\BJ =

Bj#0

}

x[ianj f

= Z)'T1 |:(er(11 #Bj,k) minieh,...,n} G < Z:zﬂ lABj,ka]

Aj\Bj=2 Bjx 20 Bji=o Bjx»@

m n n m
S ZJ:T Zk=‘l ]'{BJ,kck = Zk=1 Ck(Z}=1 MB},k = P‘L‘HJH;_I B},k:Ek) D

fg —
2.3 ffd;,t < f gdu VX -3, R, , measurable on a measure space (X, 8, ) : fyxex < g,
(=infa,, . f<infag= Lep < Ly, VS-partition P = {Aj}” of X) [

2.1.2 Monotone convergence theorem about limits & integrals

2.4 dey = sup,

:{Zj‘; (c}-efRZO)yA}.eg Aj=1,...,m are disjoint A fvxeXZZjn;1 CjXAj;x}

Mo .0:=0=10-00

M The counting measure p on a measurable space (X, 8) counts the number of elements in E € §; i.e. pg := |E|
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f —
Vmeasurable X— R, on a measure space (X, S, /,4) [

theorem 2.2

Proof. 1. ffdy > f(zj“; cij}.)dy =Y GkA;-

theorem 2.3

2. Cf. definition 2.1. (a) infyacg:,,s0 f < 00 = ‘V8-partition P = {A; € S\{@}}jm

definition of Ifdy
of X, taking ¢; = infy f shows that Ly € 5 > supg > ffdy’.
m=1

(b) infiacsipo f = 00 = 'Vt € Ry, taking {Aj}j= = {A} and ¢, = t shows that
supsztyA:ooszd,u’ ]

fo — kooo )7
Theorem (monotone convergence) VY {X = Roo | fk < fikr A fiovxex ==, fx}
k=1

of measurable maps on a measure space (X, 8, u), ffk du ko, ffd;,t u

fykezs o;vxex<fx

f —
Proof. 1. Theorem 1.13 = X— [R,, is measurable » If\”(ez» du

< ffdpt = limk_mffkdy < ffd,u

theorem 2.3

m ... m
2. Vg € [RZO})_:1V {Aj €8 ‘ Aj=,...m are disjoint A fy,ox > ¥ 7, Cj?CA,-;x}j:1
Vte (0,1), Bz, = {X € X | fipe > t T2, Gax A Ujez, Ej = X} C Eyr €8
theorem 1.14 k— o0 m
_ I,{Aijk _— ij' Then kaEZ>0;VX€X > th=1 CjXAjﬂEk;X

theorem 2.4 k— o0

_ fka€Z>o d,u > tZ}Z_‘ CjﬂAijk e llmk_m Ifk d}l > tZ)p;-l Cj’lAj

t—1 taking supremum over S in theorem 2.4

- jn;1 cjl"Aj jfd]l []
2.5 ¥ measurespace (X, 8, ), f= I, (aj € WZO)XAJes =) ke (bk € Ezo))clskes =9
= Zjn; JUA; = 2 k=1 bk, | n
Proof. 1. Say U2, A = X1 vnondisjoint pairs A;_, , € {Aj}jn;, repeat the de-
Ay
U A = (A\A) U (AT N AL U (AL\A])
A

composition < for finite steps,

2
Yioa axar = anxana; + (a0 + 2, )xarna; T XA

Zj2=1 Apa = A A N\A; T (a; + aZ)P‘AmA; T A HAl\A,
one can convert the initial sets A into disjoint ones with modified coefficients a
but unchanged value of '} _au4’

2. Replace the sets A corresponding to each modified a from step 1 by [JA, py's
finite additivity = ‘) apa’s value remains unchanged when making the coeffi-
cients a distinct.

3. Drop any terms for which A = @, getting f's standard™" representation with
'Y_app’s value unchanged. Finally, applying the same procedure to g shows that

f=giff) apua =2 bps. O

. f —
X0therwise add the term o - XU, A, to the simple map X— R,
=10y 2
. h — —
Uil The representation Y 7_, ckXg, Vsimple map X — R, on a measurable space (X, 8) is standard if ¢, . € Ry,

are disjoint A {Ek =hg, = @}

< is an 8-partition of X

n
k=1
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V{Ckeﬁzo}zz_l n
———= ) |'_, Cxpg, Vmeasure space (X, S, n H

2.6 f(Zﬁﬂ CkXEk)dl'l V{ExeS);
k=1

Proof. Apply theorems 2.2 & 2.5 on the standard representation of } ;_. cix,
O

g —
2.7 f(f+ g)du = ffdpt + Igdy Vmeasurable X BER R,, on a measure space
(X,8, 1) 0

: : i = 7 g% = |~
Proof. Theorem 1.20 = Jincreasing sequences {X =5 [Rzo}k & {X = fRzo}k
=1 =1

of simple maps measurable on (X, 8, ) : fyxex = fi oo & Gyyex = Jiroone THEN

f (f " g) dﬂ monotone co:/::ence theorem J(fk " gk) d'u ‘[fk d],t " J gk d}«l

o ffdy+Jgd;4 ]

theorem 2.6

monotone convergence theorem

2.1.3 Integration of real-valued maps

2.3 Define X LN R, by fy,cx = max {f, 0} VX5 R. fis measurable on a measure
space (X, 8, u) with at least one offfi dy < co= dept = ff+ dy — ff_ du ®
Remark. o [(|f=f" —f| = +f)du < coiff [ || dp < co.

. ffdy is defined = measurable f with at least one offfi dy < co.

E.g. fsgn du is not defined V LEBesGuE's measure u on R because f sgn*dy = co.
2.8 Vmeasurable X LR on a measure space (X, 8, ), f fdu is defined

:Icfdy cjfdy/\|ffd;4|§f|f|dy m
Proof. 1. Without loss of generality, say c > o. Then fcfdpt =) .S f(cf)S du

Legp=cLgp= [ cgdp=c [ gdp Y., S(J Fdu=c J fdu)=c f fdpu.

YceR

9 —
VX—R,, Vpartition P of X

2. |[fdu| = |Leees [Pdp| <Y us[Fdu=[Ifldu N

<oo for at least one of s

fcrs —
2.9 VYmeasurable X k—) [R on a measure space (X, S, pt)

. f feqn|dp < 0 f (Yr fi)du =Yg, ffk dy (c.f. theorem 2.7)
B fﬂ du < ffz dy (c.f. theorem 2.3) H

2.2 Limits of integrals & integrals of limits

2.2.1 Bounded convergence theorem

2.70 UEfd],t = j)(Efdy‘ < J)(E(|f| < supg |fl)dp = pesupg |fl  Vmeasurable
X—f> R on a measure space (X, SSE, /u) [ |
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k— o0

f (e]
Theorem (bounded convergence) V¥ {X SR ‘ fiovxex —— fx} of measur-

k— o0

able maps on a measure space (X,8,u) with py < oo, Ifkdy — jfd],l if
dce |R>|kaEZ>O;VxeX| =
EGcorov's theorem

f
Proof. Theorem 1.12 = measurable X— R > YVe>o0 JEe€S:

Pk < e A {fihee, converges to f uniformly[xml on E

[feap—[fap = [ fodp— [, Fdu+ [ (f-Pay|

<uxec <Yy < mxec < o

< limy_e fX\E |fi| dp + fX\E Ifl dp + limy fE f—fldu<e rbitrariness ofe,
<(pe<oo)(supg |fk—>°°—f|<€/2,4E)

Remark. Ecorov's theorem is crucial for interchanging limits and integrals in
proofs.

= limk_)oo

2.2.2 o-measure sets in integration theorems

2.4 Ymeasure space (X,S, y), E € S contains almost every x € X (denote Yx € X) if

Hx\e = O o
Remark 1. Integration theorems can almost always be relaxed to hold for almost
everywhere instead of everywhere. E.g. relax in the bounded convergence the-

k— o0 k—o0 k— o0

orem ‘fi.yyex — f to fioyxex — fi; . AE € 8 1 pxe = 0 A figyxee — £

k— o0

then Jfkdy = JE fidu = f)(E(fk — f) du = fEfdy = ffd,u.

2.2.3 Dominated convergence theorem

2.11 Ymeasurable X 3, R, on a measure space (X, 8, u) with f gdu <ocoVe >o

1. d6>o0 :IVBes:yB<59d” <€

2. BEGS:IX\E:,,E<009d”‘<€ O

hefo,
Proof. 1. Theorem 2.4 = ‘dsimple 8-measurable X s, R, :fgd,u—fhd/,t

<0
€ [0,6/2)' =d56>0:6 MaX(h, | xex) < €, A\ IB:VB«S gdu = fB(g —h)du +fB hdu <e.
H <[(g-h)dpu<®, <Hug<H&<,

2. ‘A8-measurable partition P = {Aj}jrz1 of X: [gdu—Lygp €[0,€) A FE-Ujer,..m A

<oo ianj g>o
< 0 ( <= [/g’fp < OO) A inf\/Ae?:AgE g =0 ( — Lg,ip = LXngfP)’
= [e 9k = [gdp—[xegdu— [ xegdu <€+ Lgp—Lygp =€ O

. f
Theorem (dominated convergence) ¥Ymeasurable X— R on a measure space

k— oo

fi — ® —00
(X,8,u) V¥ {measurable X5TR fioyxex — fx}k_ , ffk du Ko, jfdy if

dmeasurable X LN Ry fg dy < oo A |kaez>o;yxex < g, H

biil) e, |f, - f| arbitrarily small for large enough k
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VEES

Proof. |ffkd;,¢—ffd;4| Ux\Efkd/u fx\Efd,u+fEfkd/u fEfd/A|
< ([ o fiedn] + [ e Fer| < [2 fire g am|) + |Je (e~ Hram

EGcoroV's theorem theorem 2.11.1

1. py < 00 > AE €8 py\pes < 00 (— fX\Egdy< AR A

converges uniformly on E to f ( UE fi — d;,t| ¢/, for large enough k). Thus
| ficdp - [ fap[ —

2. For py = oo, theorem 2.112 =>JE€8: pyg <0 A fx\Egdpt <¢/,. Besides,

k—>oo

UE fidu — fEfd,u| < ¢/, for large enough k by case 1 as applied to {fk|E}:;1- Thus
[ feap— [ fau] = =

2.2.4 RIEMANN's & LEBESGUE's integrals

f
2.12 A bounded [a,b]— R is Riemann-integrable iff fiixe[ab] | fis discontinuousatx} = ©

(say —o0 < a < b < o0); besides, f is measurable on the measure space (fR, <, ]4), with
. ) s b, of xiv]
Riemann’s integral L f= j[a,b] fdj |

Proof. Vpartition Py,cz dividing [a, b]into 2" subintervals I;_,  ,» of equal size
(b-a)/., RIEMANN's lower sum Lp (o) = f[a,b] (gn = ij; X, infy f) dji & upper sum
Ut fab) = Jlap) (Mn = 50 1, supy f) g™ Theng, < - <g, | <f<h, o <

bounded convergence theorem ) .
- < h, > RIEMANN's  lower & upper integrals Lgp,
(if applicable; c.f. remark 1) Y

= limn o Leg, fab] = f[a,b] Ineo A& Ugap) = limy o Ugg [ab) = .[[a,b] oo Ak
by definition
Thus RIEMANN- lntegrabl.e f —— Lf[a b] = Uf[a b]

= J-[ab] hnosco = Gnseo 2 o)dl’l: 0
& o= {x € [a, b] ‘ Inooox * hn_)oo;x} = {x € [a,b] | fis discontinuous at x} [
2.2.5 Appoximation by nice maps

F—
2.5 Vmeasurable X— R on a measure space (X, 8, ), fs L1-norm ||f||, := j |f| du;

f
Lebesgue’s space L}, := {8-measurableX—> R ‘ Ifll, < oo} o

n€R., distinct

E.g. Vmeasure space (X,$,u), fa':
k=1

VEVkeh,...,n}es < oo, with ”f”1 = ZE:1 |ak|/"Ek-
E.g. £, is €' if p is the counting measure on the measurable space (Z,,, 2%»).

Y ken AXe, €Ly iff

n€X disjoint

.....

ak—a
Say Z,, —> R, then lae €1, = Y2 |ay| < 0.

Properties (£'-norm’s) Ymeasure space (X,8, ) Vf& g € £},

[XiV]Say—oo <a<b<c< o, (a,b)—f> R is measurableon (R, 2, ﬁ),then—fbafz Lbfz Lb fodx = J(a b)fd;i = ch+ Jcbf

tEor aesthetically pleasing form of mathematics, at each of the endpoints (other than a & b) that is in two of the
subintervals, change g 's value to be f's infimum over the two subintervals, and h,'s value to be f's supremum over
the two subintervals.
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Il = o

”f”‘l =0 iﬁf\jxex =0

YceR

I<tll el - £l

I+ ]|, < Ifl, + g,

e Ye >odsimplehe £, : |f-h]|, <e |
2‘.6 Denotes L;ibyLFR for the measure space (R, F € {®, £}, ji), with ||f], = J[R |f| dji
9= ko, Akl

2.7 R ———— Rwithintervalsl,_, , CRanday_, ,€ R, ,isastepmap @
Remark. » |9, = Yp_, |ax|fu, if l=n, . are disjoint.

1o
e Jely 'fF/'”Vke{1,...,n} < .

* The intervals in 9's definition can be open or closed, or half-open; includ-
ing/excluding interval endpoints does not matter when using 9 in integrals.
2.13 Vfe Ly Ve >0

- dstepd € L 1 ||f =9, <€

. Jcontinuous R > R : ||f— g”1 < € A PxeR | g 20} < H
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3 Differentiation

3.1 HARDY-LITTLEWOOD’s maximal map

Inequality (MARrRkoV's) Hixex | [h(x)|>c} < ||he£’1‘||1/(c>o) Vmeasure spaces (X,5,u) W
Lemma (ViTALl's covering) Every sequence {l, C R};_, of bounded nonempty open
m
intervals has a disjoint subsequence {Iki}j=1 P Uker Ik € UL, 3ly, with 3l the open
interval with the same centre as | and ji; = 34 u
Inequality (HarDY-LitTLEwooD's maximal) jijper |hesc) < 3hesti] / y with

h™:b— sup,, (J"ttlhl)/2t
R R., HARDY-LITTLEWOOD’s maximal map™"’ V-

>

h
measurable R — R [

3.2 Derivatives of integrals

3.7 (1 i R)’s derivative gl’) = lim_,, (9b+t‘9b)/t (if the limit exists; g is then dubbed

differentiable) at b € | Yopen interval | C R ®
Fundamental theorem of calculus f € 2 is continuous atb € R = g, = f, with
gx—f’ f

R— R

Theorem (LesesGuE's differentiation) fe £ = Yb e R

b+t
f—f,
° Umtlo (jb—t | b|)/24c —0

°gb—beltth——J——>[R H
3.1 A%-measurable E C [0,1] : fignop) = b/2 Vb € [0, 1] H
Proof. dsuchE =g, » = j_boo Xe Yoclon] b/2
) b
N 1/2 Vbe(o,1) , VbeR )(E;b c {O, 1} 0
LesesGuE's differentiation theorem
. ( b+tf)
3.2 foErR - l.lmtlo bt 2t Vf € £1|-R .
3.2 PpcRiber = limy, (ﬁE”<b—t'b+t))/2t is E’s density at b [
1 if b € (o0,1)
E.g. 0jo,.jp = {1/2 ifbe€{o,1}.
o otherwise
Theorem (LesesGue's density) ' oYbet o
eorem (LEBESGUE b= -
S density) Oveez;b 0 VbeR\E
3.3 dE€ R : 0 < fign < f) Ynonempty bounded open interval | |

[XVi]E,g, (X ) )ﬂr _ 1/(1+2|b\) lf2|b| > 1
LI b if 2]b| < 1
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4 Product Measures

4.1 Product of measure spaces
4.1.1  Product o-algebras

4.1 A x Bisarectanglein X x YV (A, B) € 2X%Y o
4.2 The product S ® T is the smallest o-algebra on X x Y containing all rectangles
A x B (dubbed measurable) with (A, B) € 8 x T Ymeasurable spaces (X,8) & (Y, 7)
o

4.3[Elix:={yeY|(ay)€E} and [EPP<Y:={xeX]|(x,b)€E} are the

cross sections of E C X x Y o
(B ifacA v _[A ifbeB

Example 41 [AXB]*’EX‘{@ faea SAXBPT =15 ipes

V(A,B) € 2XxY,

4.7 ([E]P€Y, [El,ex) € 8 x TVYE € 8 ® T Vmeasurable spaces (X, 8) & (Y,7) H

Proof. AxBe & ={ECXxY|([E]PY,[El,ex) € SxT} Y(A,B)e8xT by ex-
ample 4.1, with € closed under complementation and countable unions as
[(Xx Y)\E], = Y\[EL.) [Ukez, (Ex € X% Y)], = Ukez [Exla Va € Xetc. Hence € is

a o-algebra on X x Y containingallAXxB e 8§®T7;ie. ST C & ]
[f]Van:YHfa,y [f]VbEYX'_)f ,b
4.4Y —— > [R & X ————— [R are the cross sections of X x Y—> R [

4.2 [fly,ex is T-measurable on Y and [f]7b€Y is §-measurable on X ¥ 8 ® T-measurable
X x Y5 R Vmeasurable spaces (X, 8) & (Y,7) m

theorem 4.1

Proof. VB € B, 8 ® T-measurable f = fz' € § T —— [’ ] € T; besides,

ye([fl)g & f,, = (fl.), €B = (a,y) €fs' <y €[fg"],. Thus ([f], ) e
- [fg“]a € T; i.e. [f], is T-measurable. Similarly, [f]° is S-measurable. ]

4.1.2 Monotone class theorem
4.5 A C 2Xis an algebra on X if
-oeA

-EecA=X\Ee A

- By € AR Exe A ®
4.3 V'measurable spaces (X, 8) and (Y, T), the set A of finite unions of rectangles in
8 ® Tisanalgebraon X x Y, each such union equals a finite union of disjoint measurable
rectangles in S ®T |
Proof. 1. (a) Obviously A is closed under finite unions.

(b) VAL...,n & C1,...,m €3 VBL...,n & D1,...,m €7, (an=1 A} X B)) m (Urkn=1 Ck X Dk)
= UL, UL [(Ay x Bj) N (G x Dy) = (Aj N C) x (B; N Dy)]; intersection of two
rectangles is a rectangle, implying that A is closed under finite intersections.

(c) (XxY)\(AxB)=[(X\A)x YJU[Xx((Y\B))] Y(A,B)e8xT. Hence the

complement of each § ® T-measurable rectangle is in A. Thus the complement
of a finite union of 8 ® T-measurable rectangles is in A (use bE MORGAN's laws
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and step (b) that A is closed under finite intersections). l.e. A is closed under
complementation.

2. [AxBJU[CxD]=[AxB]y[Cx(D\B)]w[(C\A)x(BND)] VS ® J-
measurable rectangles A x B & C x D. Hence Yfinite union of 8§ ® T-measurable
rectangles, if it is not a disjoint union, choose any nondisjoint pair of measur-
able rectangles in the union and replace them with the union of three disjoint
measurable rectangles as above. lIterate this process until obtaining a disjoint
union of measurable rectangles. O
4.6 M C 2Xis a monotone class on X if

B e M | Byjez,, S B}y = Ukez, Bk EM

. {Ek eM | E\v’jeZ>o 2 Ej+1}k€Z>o = mk€Z>o Ek eM o
Theorem (monotone class) The smallest o-algebra 8 containing an algebra A on
X is the smallest monotone class M containing A u

Proof. 1. Every o-algebra is a monotone class = M C 8.

2. (a) Ae A= A C monotone class E={EEeM|AUEeM} (as ACM is
closed under finite union) > AUEEM CEVEEM =

(b) A C monotoneclass D ={DeM |DUEe MVEeM}=>MC Dis closed
under finite union =

(c) i. F = U}; (EeM)eM=F o, =Ul, Fk €M (as M is a monotone
class) = M is closed under countable union.

ii. Ais closed under complementation = A C monotone class M’
={Ee M| X\E € M} = M C M’ is closed under complementation.

Hence M is an o-algebra containing A, and thus M 2 § ]

4.1.3 Products of measures

4.7 A measure y on a measurable space (X, S) is dubbed

Finite if yuy < oo.

o-finite ifX = Uz, (Xi € 8) with Hxoez,, < O o
E.g. * LEBESGUE's measure on [o, 1] is finite.

e LeBESGUE's measure on R is not finite but o -finite.

e Counting measure on R is not o-finite (because the countable union of finite
sets is countable).
4.4 Y o-finite measure spaces (X, S, /4) & (Y, 7T, 1/)

1. X = Vg, is S-measurableon X and y — Wiepey is T-measurable on YVEeS®T.

T W o
2. the product S ® T e (}‘XV)5®¢T is a measure on (X xY,8 ® 7)

|
Proof. 1. Without lose of generality, one just need to prove that x — v (well-
defined, as [E € S ® iT] € T < theorem 4.1) is S-measurable on X.

VxeX

(a) If v is finite, one need to prove that

8®T =M={E€8®T :x— v is S-measurable on X}.
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By example 4.1, (A,B) € S X T = vjaup], = VBXAx VX € X; i.e. X — V[ap], €quals
the S-measurable map vgx on X. Hence M contains all measurable rectangles
in8®7.

By theorem 4.3, E € algebra A of all finite unions of measurable rectangles
in 8 ® T = dmeasurable rectangles E,_, V[E=wl_, Ei] =0, [Ei], =) oy Vg,

l.e. x — v is a finite sum of S-measurable maps and is thus $-measurable.
Hence E € M, and A C M.

The next is to show that M is a monotone class on X x Y. Vincreasing se-

co—k

quence {E, € M}, VIUE, B =U, (B, < VIEd,: Hence x — v[ e Bl is 8-

XVIl

measurable,”™ | g2, Ex € M, and M is closed under countable increasing uni-

co—k

ons. Ydecreasing sequence {E, € M} ., VI, Bl =N B, < VIEd, for finite

y. Hence x — V[N Ed is S-measurable, (2, Ex € M, and M is closed under
countable decreasing intersections.

Finally, monotone class theorem = the monotone class M containing A contains
the smallest o-algebra containing A; i.e. M2 8 ® 7.

(b) If v is a o-finite, I{Y\, € Th., : UL, Y = Y A vy,,, < co. Replacing each
Y, by Y, U - UY,, one can assume that Y, € Y, C ... VE€8QT,

co—k

Ve, < V[En(xxYy)] With X = V[en(xxy,)] S-measurable on X (by step (a),

with v considered finite when restricted to the o-algebra on Y| consisting of
T-measurable sets E C Y, ). Hence x — vg) is 8-measurable on X.

2. Clearly (4 x v)y = 0, and u x v is the countably additive as (u x V)HEZ1(EI(GS®T)

h JX( Uk 1 Ek =i 1[Ek Zk 1 1/[Ek )dl/lx Zio:1 Ix V[Ek]x dl'lX

- ZI(:‘I(;u X V) Ex [
E.g. (xV),p=Have V(A B) €8x T

monotone convergence theorem

4.2 Iterated integrals

T- measurable onY
Theorem (ToNELLI's) Ixxv (uxv) Jx fo dv, dp, = fY Jx ydpdvy, Vo ®T-

8- measurable on X
f— .
measurable X x Y — R, on o-finite measure spaces (X,8,u) & (Y, T,v) [

x:(j,K)—=x e —
E.g. Consider Z , x Z , ——— R, and o-finite counting measure spaces

(Z>o:22>°1l")' then Jz>oxz>o xd(pxp) = (Zjez>o Zkez>o = ZkeZ>0 ZjeZ>o )Xj,k-

T-measurable on Y
Theorem (FusINI’s) Ix yfd(p xv) ffof dv, dp, = IYJ-X ydpcdv, V8 ®T-

8-measurable on X

measurable X x Y5R on o-finite measure spaces (X,8,pu) & (Y,T,v):
du,) 0

Jioy 1l Al x ) < 00 (and thus [, [fyxexy| dvy < 00> [ [fevyev

f
4.5 Up:={(x,t) e Xx R, | o <t < f,} is the regionunder the graph of X— R,

ilRecall that pointwise limit of S-measurable functions is 8-measurable
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Then measurable f on o -finite measure space (X, S, ;4) >U;ed®@R
A (px ﬁ)uf = Jx fdu = JR>O Hixex | t<f,)dfk ¥ Lebesgue’s measure space (Rso, B, 1) M

4.3 LEBESGUE's integrals on R"

4.6 X 1, G C RXk=1 " is open Y open Gy-,, € R™ |
4.8 Borel's B C R" is an element of the smallest o -algebra on [R" containing all open
G C R"; denote the o -algebra of all Borel’s B C [R" by %8, [
4.7 - GCRMisopen < G = Uz  Cy with Cyyez,  open cubes C R".

- 9B, is the smallest o -algebra on R" containing all open cubes C R" |
4-8 Byz_ n = B, Bn, u
4.9 Define inductively Lebesgue’s measure fi, = fi,_, X ji, on measurable spaces
(fR", %n) with fi , Lebesgue’s measure on ([R, R, ) ()
4.9 VE€ B Vte R, o, tE € B Afinee =tk |

4.170 D,(D,f) = D,(D,f) VG—f> R : dcontinuous D,f & D,f & D,(D,f) & D,(D,f)
onthe open G C R?, where the partial derivates (D,f), , :=lim._,, (Festy~fe) /t &

(D,f),., = lim,_, srhr) [ v (x,y) € G ete. B
Xy Y
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A Riemann’s integration

A.1 Riemann integral

A.7 Apartition of [a,b] C Risafinitelist {x;}]_ witha = x, <X, < <X, =b @
Remark. Use the partition to think of [a,b] = ., [xi_1,xi].
A.2 inf = infr, & Sl/ipf = supy, YA C domain of a real-valued map f o

f
A.3 V¥bounded map [a,b]—> R Vpartition P = {x;}., of [a,b], Riemann’s lower

& upper sums are

n n

Ltp,jab) = Z (i _xi—1g<inff] & Utplab = Z (Xi = Xi—1) supy =

i=1 i—1Xj i=1 [Xi—1lxi]

Remark. RIEMANN's sums approximate the signed area under f's graph.

A.1 Yboundedmap [a,b] LR Vpartitions P, P’ of [a, b] with the list defining P a subset
of the list defining P’, Lgp 12 ) < Lepjab] < Ut ab] < Ugp [ab] u
A.2 Vbounded map [a,b] LR VpartitionsP, P’ of [a, b], Lgp 2] < Ugp/ [ H

f
A.4 Vbounded map [a, b] — R, Riemann’s lower & upper integrals are

Ltfap) SupoP[b] & Utpap) = Igfuf""[a'b] -

f
A.3 Vbounded map [a,b] = R, L¢[, 1) < U, p] H
A.5 A bounded map on a closed bounded interval is Riemann mtegrable if its lower

and upper Riemann integrals are equal E.g. Riemann’s lntegralf f= Lt(ab] = Ut[ab]

of a Riemann integrable map [a, b] LR o

Example A.1 V]o, 1] RN R VP, = {i/n}]

i=o’
n

1i—1V 1 1 1
o1 = )_nl ) =3 am e

i=1

n . 2
1/ 1 1 1 1
U = —| — = — R
f,Pn,[0,1] E n(n) 3 + 6n2

i=1

neZ

3
Uf[o ‘l] < |nf an,[o,‘I] = f fzg nérz]f f,Pn,[0,1] < Lf'[o'_‘].
0]

A.4 Every continuous real-valued map on a closed bounded interval (and thus the map
is uniformly continuous) is Riemann integrable |

f
A.5 VYRiemann integrable map [a,b] — R,

a) inf; < f<(b—-a)su [
[a b{ J- [a,bp]]c



21 B COMPLETE ORDERED FIELDS

A.2 RIEMANN’s integral is not good enough
Riemann’s integration does not
- handle maps with many discontinuities or maps unbounded

. work well with limits

if x €
Example A.2 f,, ;) = ; :fi . E\Q has many discontinuities, and
V[a,b]C[o,1
infr= 0= 1= sup; 2220 5 ¢ (R\Q)T A g € Quupy
& [a,b]

Thus Lgpoq) = 0 2 1 = Ugp o 4] Ypartition P of [0, 1], L¢jo ) = 0 # 1 = Ug[,4), and

f
[0, 1] = R not RIEMANN integrable.

1 if )
Example A.3 f, = { /ﬁ ffx € (01] is unbounded, and supy_ =00 V¥ partition
0 ifx=o0 o

P = {x}iL, = Ugpo,1] = oo by definition. However, we may redefine f;f as
lim,, f; f, for the area under f's graph is lim,, (E f=2- 2\/5) = 2.
Example A.4 Given a sequence r,,r,,... that includes each q € Qg . ex-

actly once but no other numbers, and ficz _«c(o,1] = { /‘/X__rk !fx ~ T then
o) if x <,

fe = Y ke, '/ is unbounded on every non-empty open subinterval | C [o, 1] be-

causel 5 q € Q, and f's RIEMANN integral is thus undefined on |, although the area

(< 2) under f's graph seems reasonable.

Example A.5 RIEMANN's integration does not work well with pointwise Llimits.

E.g. given a sequencer,,r,, ... thatincludes each q € Q¢ ;] exactly once but no

ifx e {rl<. . :
other numbers, then each ficz_ (01 = 1 ifxed ..},21 is RIEMANN integrable
o o otherwise
1 1 ifxe@
and | fi, = o. However, f, = lim_ fi« = , is not RIEMANN in-
fo k X my k;x {O if x € R\Q | A '

tegrable (cf. example A.2).
A.6 Vsequence f,,f,,... of Riemann integrable maps on [a,b] with |fkeZ>o,xe[a,b]

SMeR, [f=lime., [ fif
1. Vx € [a,b]3f, = lim . fi x

2. fisRiemann integrable on [a, b] u
Remark. The undesirable hypothesis 2 and the difficulty in finding a simple
RIEMANN-integration-based proof suggest that RIEMANN’s integration is not the
ideal integration theory.

B Complete ordered fields

B.1 Afieldis a set [F with two binary operations symbolised as addition and multiplic-
ation: Va& b & celF

Commutativity a+b =b+aAab =ba
Associativity (a+b)+c=a+ (b+c)A(ab)c =a(bc)

Multiplicative distributivity over addition a(b + c) = ab + ac
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Additiveidentity 10 €lF:a+0 =a

Multiplicative identity d!1-€F:a1 =a

Additiveinverse 1!—aclF:a+(-a)=0

Multiplicativeinverse d!la—" €[F :aa™" =1 ®
Remark 2. —(—a=-1-a)=a 22 (a‘1)_1 YaelF.

E.g. The set Q of rationals under usual addition and multiplication.

E.g. The set {0, 1} under usual addition and multiplication except that 1 + 1 := o.
B.1 a0 = OVa€fieldlF |
B.2 VYa,b efield [F, their

Difference a—b :=a+ (-b)

Quotient a/b:=ab 'forb = O o
B.3 Afield [F is ordered if 1 positive P C TF :

caclF=>aeP¥Ya=0V¥Y-aelP

-a&beP=>a+bePAabePlP o
B.2 A positive P C ordered field T is closed under multiplicative inverse; i.e.a~' € P
VaeP,with1 €P H

B.4 Va & b € ordered field [F D positive P
ca<b¢=b-aeP«b>a

-a<b¢&a<bva=b¢«b2>a o
Remark 3. O < b iffb € P.

Va,b,ceF
B.3 The ordering < on an ordered field [F is transitive; i.e. a < b <c—Za<c m
B. 5 The absolute value |b| b ifb>0 fb € ordered field [F [
. = rder
§ The absolute value b itb<0(° ordered fie

Remark 4. |b| > b, —b.
B.4 |a+b| <|a| +|b|]Va & b €ordered field I[F H

B.5 Everyordered field [F O Q;i.e. 4 injection[x Vil Q %, [F, such that

m=0

Qimm=(F1 £ 1)1+ +1)7
m times n times

O = ¢,

VmeZ,, = |{zcZ|z>o0}VneZ,,, preserving all ordered field properties.”™ W
B.6 ¢>=2=>q¢Q H
B.6 b € ordered field IF is an upper bound of A C Fifa<belFVae A (]
E.g. For both Q_; and Q;, every b € Q. is an upper bound, and 3 is the least
upper bound.

Remark 5. A least upper bound of a set, if it exists, is unique.

Example B.1 Q_ ;; = {q € Q|q* < 2} has no least upper bound b € Q. The idea
is that

* be Q. ;=3b (= b+ )/ | forexample) € Q_ j slightly bigger than b

e be Q>\/; = Q<\/; has an upper bound ([b — (bz‘z)/lb] for example) slightly
smaller than b

vYm,n,p,q€Z,,
[XVI”]I.e. (Pm/n = (Pp/q R et m/n = P/q

Ci¥Viz, Va & b € Q, Parp = Pa + Pby Pab = PaPr Pa > 0 <= a > 0 etc. (with a = o for the multiplicative inverse
condition)
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e Sob=42¢0Q.
B.7 An ordered field is complete if every its non-empty subset bounded above has a
least upper bound; denote the field by R and call it the field of real numbers ()

B.8 tis Dedekind’s cut if
cgcCcrcQ

* q € Q<reF:>q er

- Thasnolargest element

Denote the set of all Dedekind’s cuts by R o
Remark 6. Intuitively, 7 = Q_, ~re R ~ R.

B.9 S\A := {s € S|s ¢ A} is the set difference from A to S. If A C S, then S\A is A’s
complement in S ()
B.10 Make R afield V¥_,, € R,R>

: Zi:'l,z ri= {Zi=1,2 l’i|rj=1,z € ?J}
- 0:= <I3<o
- Fi={re Q@) = o}
{I_Ii2=1 I’i|rj:1,2 € Fj} U ng ifFj-I-sz “
° I_Ii2=1 INli = {I_Ii2:1 l’i|l’j € F)" l’3_j € Q\F3_J} lfFJ-'-e{1’2} =0 # F;—J with

{qeQFr,, e tq <[} ifr,, =0
Pt |~,>o[xx] and 7 = (Q\F)so

- 1= <I3<1

L= {re Q@) = o

Makefield R ordered define? € IR tobe positiveif b € 7 : b > o/ o
B.7 The ordered field R is complete;i.e. @ C R ¢ R A Rbounded above = R has a least
upper bound | J; .z ¥ 0

C Supremum & infimum

Property (Archimedian) Vre R3dze Z,,:r<z. le. VYreR>*dzeZ ,:z" <r

|
C.1 Yae R<PR3q e Qcpop, m
C.7b € Risalower boundof A C Rifb<aVaeA )

E.g. For both R>3 and R23, every b € R=<3 is a lower bound, and 3 is the greatest
lower bound.

Remark 7. A greatest lower bound of A C R, if it exists, is unique.

C.2 Everynon-empty A C R bounded below has a greatest lower bound |
C.2 VA C R, its supremum & infimum are respectively

A’s least upper bound if Abounded above A A = &
SUpp = {0 if A has no upper bound
—00 ifA=9

I Think of the condition ¥* # @ as equivalent to ¥ > 6

[xxil= . _ _ definition ,_ 5 .
f, CF, &, <f,——=(F, - F,) positive
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A’s greatest lower bound if A bounded below A A = &

& infy :={ -0 if A has no lower bound |

00 ifA=0
C.3r € Risirrationalifr ¢ Q;i.e.r € R\Q
C.z3dreR>°:r2 =2.Ie. dr = \/Ze R\Q

C.4 Yac R<beRIr ¢ (R\Q)“ N
C.4 (-0, ) := R, with

- the ordering > on R extended to [-oc0, 00| := R U {#c0} as
— a<ooVae[-00,00) = RU {~o0}

— —oo <aVa € (—oo0,00] := R U {oo}

- Va,b € [—00, ]

- a<b¢<=b>a

—a<b&ca<bva=b=ab>a

C.51 € [~o0,00]isanintervalif (a,b) C 1Va,b € |

C.5 Vinterval | € [—~00,00] da & b € [-c0,00]: (a,b) C1C [a,b]. So | =(a,
V[a,b]V(a,b]V[a,b)

mEZeeo0

D Open & closed subsets of R"

D.1R" := {(xw ey Xn) = (xi)?:1|x)-=1,wn € fR}isthe set of all ordered n-tuples of real

numbers o
n
D.2Vx = (x;)._, € R, [Ix]| :== L, Ix[* Xl = max{|x|}iL, ®
D.3 A sequence a,,a,,::- € R" converges to a limit L =lim_,a; if Ye>o
AmeZ,, : |lakem — L <€ O
definition D.3

Remark 8. limy_,, ay = L —= lim_, |lax - L||00 =0

IXlloo<lIXll<y/nlIX]l o ¥xER™

iMoo [|ak — L|-

D.1 A convergent sequence a,,a,,--- € R" converges coordinate-wise;
. . n n . .

l.e. lll’]’1k_>00 (ak = <ak’j)j:1) =L= (L)))=1 1ﬁl|mk_>oo aklvje{i}in:1 = L) H
D.4VYx € R"Y6 > o, the open cube B, s := {y € fR”|||y—x |Oo < 5} o
D.5 An openinterval|l = (a,b) C R for somea,b € [—00, 0] o
D.6 X C R"is

Open ifBy,cx 3550 € X

Closed ifits complementin R"is open [
Remark g. Instead of open cubes, open sets could have been equivalently defined
using open balls {y € R"||ly - x| < 6} € B, s C {y e R||ly - x| < \/ﬁé}

D.7 V collection A of aset S’s subsets, theunion | Jg.4 E := {x € S|JIE € A : x € E}and
the intersection (g4 E := {x € S|x € E VE € A} m
E.g. Ure, [1/k 1= 1/k] = (0,1), N2, (—1/k, 1/K) = {o}.

D.2 The union of every collection of open subsets of IR" is open in R"; so as the intersec-
tion of every finite collection of open subsets of R" |
D.8 A set Cis countableif C = oV C = {c,,c,, ... } for some sequencec,, c,, ... of ele-
ments of C [
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Remark. Every finite set is countable. If C is infinite countable, then it can be
written as {b,,b,, ... } of distinct elements.
D.3 Q iscountable |

Proof. Start with the list {—1, 0, 1} at step 1, adjoin to the list in increasing order
the rationals € [—n,, n] that can be written in the form m/n for some m € Z at step
n, and continue in this fashion to produce a sequence containing each rational

[
D.g A sequencek,, E,, ... of setsis disjoint if Ej, N E, = & ®
D.4 A C IR open iff A the countable disjoint union of open intervals |
D.5 A C IR" closed iff A > limit of every convergent sequence of elements of A |
Laws (DE MoreaN’s) Ycollection A of subsets of some set X, X\UgeuE
= Meea (X\E), X\Neea E = Ukea (X\E) E
D.6 The intersection of every collection of closed subsets of R" is closed in R"; so as the
union of every finite collection of closed subsets of [R" |
D.7 The only subsets of R" that are both open and closed are @ and [R" |
E Sequences & continuity
E.7 Asequencea,,a,, - € Ris
Increasing ifayycz < ayy,
Decreasing if ayycz = Ak
Monotone ifitis either increasing or decreasing ()

E.2. A C R"isboundedif sup {||a]| .} ,cp < o0

- A map into R" is bounded if its range is a bounded subset of R". Particularly, a se-

quencea,, a,, --- € [R"isbounded if sup { ”ak”oo}kez < o
E.1 Every bounded monotone sequence of real numbers converges |
E.za,a,..., withki_,, €Z,,andk, <k, <--, is a subsequence of a sequence
a;,a,,... ()
E.2 Every sequence of real numbers has a monotone subsequence |
E.3 (BoLzANO-WEIERSTRASS'S) Every bounded sequence in R" has a convergent sub-
sequence |
E.4 Every sequence of elements of a closed bounded F C R" has a subsequence that con-
verges to an element of F |

f
E.4 A— R"VA C R™is continuous

Atbe A ifYe>oYacAdS>o0:lla—b|, <6 |f,—fl. <€

onA ifitiscontinuousateveryb € A ®

k— o0

E.s A—f> RM VA C R™ is continuous at b € A iff f, —— f, Vsequenceb,_,, €A

that converges at b |
f

E.sA— R" YACR™ is uniformly continuous if Ye >0 16>0 VabeA:

la=blle, <é=IIf, = full, <€ O

fix—x2 ) . . .
Example E.1 R 2, R is continuous but not uniformly continuous.

E.6 Every continuous R"-valued map on a closed bounded subset of R™ is uniformly
continuous |
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E.7 Every continuous real-valued map of a closed bounded subset of R™ attains its max-
imum and minimum |

f
E.6 VS — Tbetweensets Sand T, fy := {f,} .y is the image of X C S under f O

f
E.8 A continuous F— R" of a closed bounded F C R™ is a closed bounded subset of R"
|
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