Elements of Measures

JaiMan NG

Abstract

Self-study notes on Axler's *Measure, Integration & Real Analysis*. [i] I share a succinct digest complemented by a bit of my own (naïve) comprehension (in some details for the *measure* part), with the hope of providing a beginner's perspective to fellow learners. Please refer to the original text for much greater interpretations.

Contents

1		isures		1		
	1.1	Outer	measure on $\mathbb R$	1		
		1.1.1	Definition & good properties of outer measure	1		
		1.1.2	Outer measure of compact interval	1		
		1.1.3	Nonadditivity of outer meansure	2		
	1.2	Measu	ırable spaces & maps	2		
		1.2.1	Motivation & definition of σ -algebra	2		
		1.2.2	Borel's subsets of \mathbb{R}	2		
		1.2.3	Inverse images of measurable maps are measurable	3		
	1.3	Measu	res & their properties	4		
	1.4	Lebes	gue's measure	5		
	1.5	Conve	rgence of measurable maps	6		
		1.5.1	Pointwise convergence is almost uniform convergence	6		
		1.5.2	Approximation by simple maps	7		
			Borel's measurability is almost continuity	•		
		1.5.4	Lebesgue's measurability is almost Borel's measurability	8		
2	Integration 9					
		_	ration with respect to a measure	-		
			Integration of nonnegative maps	-		
			Monotone convergence theorem about limits & integrals	-		
			Integration of real-valued maps	-		
	2.2	Limits	s of integrals & integrals of limits	11		
		2.2.1	Bounded convergence theorem	11		
		2.2.2	o-measure sets in integration theorems	12		
			Dominated convergence theorem			
		2.2.4	Riemann's & Lebesgue's integrals	13		
			Appoximation by nice maps			
3	Differentiation 15					
				_		
	3.1	Hardy	-Littlewood's maximal map	75		
			r-Littlewood's maximal map	_		

Free copy online! How generous. Thank you, professor Axler.

CONTENTS ii

4	Product Measures				
	4.1 Product of measure spaces	16			
	4.1.1 Product σ -algebras	16			
	4.1.2 Monotone class theorem	16			
	4.1.3 Products of measures	17			
	4.2 Iterated integrals	18			
	4.3 Lebesgue's integrals on \mathbb{R}^n	19			
A	Riemann's integration				
	A.1 Riemann integral	20			
	A.2 Riemann's integral is not good enough	21			
В	3 Complete ordered fields				
C	Supremum & infimum				
D	O Open & closed subsets of R ⁿ				
E	E Sequences & continuity				

1 MEASURES

1 Measures

1.1 Outer measure on $\mathbb R$

1.1.1 Definition & good properties of outer measure

1.1 The outer measure [ii][iii]

$$\mathring{\mu}_{A} := \inf \left\{ \sum_{k=1}^{\infty} \ell_{I_{k}} \mid \{I_{k}\}_{k=1}^{\infty} \text{ is an open cover of } A \right\}$$

of $A \subseteq \mathbb{R}$, with

$$\ell_I := \begin{cases} b-a & \text{if} \, \exists \, a \, \& \, b \in \mathbb{R} : a < b \, \land \, I = (a,b) \\ o & \text{if} \, I = \varnothing \\ \infty & \text{if} \, \exists \, a \in [-\infty,\infty) : I = \pm (a,\infty) \end{cases}$$

the *length* of an interval $I \subseteq \mathbb{R}$

Properties (outer measure's) 1. $\mathring{\mu}_{\forall \text{countable } C \subseteq \mathbb{R}} = 0$

2.
$$\mathring{\mu}_{\forall A \subseteq B \subseteq \mathbb{R}} \leq \mathring{\mu}_B$$

3.
$$\mathring{\mu}_{t+A} = \mathring{\mu}_A \ \forall \textit{translation} \ (t+A) \ \text{of} \ A \subseteq \mathbb{R} \ \text{by} \ t \in \mathbb{R}$$

$$\begin{split} &4. \ \ \mathring{\mu}_{\bigcup_{k=1}^{\infty}A_{k}} \leq \sum_{k=1}^{\infty}\mathring{\mu}_{A_{k}} \ \forall \{A_{k} \subseteq \mathbb{R}\}_{k=1}^{\infty} \\ &\textit{Proof.} \ \ 1. \ \ \forall \, \varepsilon > o, \ \text{an open cover} \left\{I_{k} = c_{k} + \frac{(-\varepsilon,\varepsilon)}{2^{k}}\right\}_{k=1}^{\infty} \ \text{of} \ C = \{c_{k}\}_{k=1}^{\infty} \\ &\Rightarrow \mathring{\mu}_{C} \leq \sum_{k=1}^{\infty} \left(\ell_{I_{k}} = \frac{\varepsilon}{2^{k-1}}\right) = 2\varepsilon \xrightarrow{\varepsilon' \text{s arbitrariness}} o. \end{split}$$

- 2. B's every cover covers A.
- 3. ℓ_I is translational invariant (by any distance t) \forall interval I.

4.
$$\forall \epsilon > 0$$
, pick an open cover $\left\{I_{j,k}\right\}_{j=1}^{\infty} \forall A_{k \in \mathbb{Z}_{>0}} : \sum_{j=1}^{\infty} \ell_{I_{j,k}} - \mathring{\mu}_{A_k} \in [o, \epsilon'_{2^k}]$. Then $\mathring{\mu}_{\bigcup_{k=1}^{\infty} A_k \subseteq \bigcup_{i=2}^{\infty} \left\{I_{i} \equiv \bigcup_{(k,j) \in (\mathbb{Z}_{>0})^2; k+j=i} \left\{I_{j,k}\right\}\right\} = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} \left\{I_{j,k}\right\} \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \ell_{I_{j,k}} \leq \sum_{k=1}^{\infty} \mathring{\mu}_{A_k} + \underline{\epsilon}$

$$Remark. \bullet \mathbb{Q} \subseteq \mathbb{R} \text{ is countable} \Rightarrow \mathring{\mu}_{\mathbb{Q}} = 0$$

•
$$\mathring{\mu}_{\varnothing} = \frac{\text{properties } 1-2}{\forall S \subseteq \mathbb{R}, \ \mu_S > 0, \ \varnothing < S}$$
 0.

1.1.2 Outer measure of compact interval

$$\begin{array}{ll} \textbf{1.1} & \mathring{\mu}_{[a,b]} = b - a \ \forall \ a \ \& \ b \in \mathbb{R} : \ a < b \\ \textit{Proof.} & \textbf{1.} & \forall \ \varepsilon > o, \ \mathring{\mu}_{[a,b] \subseteq (a-\varepsilon,b+\varepsilon) \cup \varnothing \cup \varnothing \cup \cdots = (a-\varepsilon,b+\varepsilon)} \leq \mathring{\mu}_{(a-\varepsilon,b+\varepsilon)} = b - a \underbrace{+2\varepsilon}_{o} \end{array}$$

2. (a) By Heine-Borel's theorem, every open cover $\{I_k\}_{k=1}^{\infty}$ of a closed bounded $[a,b]\subseteq\mathbb{R}$ has a finite subcover $\{I_k\}_{k=1}^n$ (b) Prove $\sum_{k=1}^n\ell_{I_k}\geq b-a$ by induction on $n\in\mathbb{Z}_{>0}$. Then $\sum_{k=1}^{\infty}\ell_{I_k}\geq\sum_{k=1}^n\ell_{I_k}\geq b-a$ \square Remark. $\mathring{\mu}_{(a,b)\subseteq\mathbb{R}}=\mathring{\mu}_{(a,b]}=\mathring{\mu}_{[a,b]}=\mathring{\mu}_{[a,b)}$.

1.2 Every nontrivial (i.e.
$$\exists$$
 a & b \in I : a $<$ b) interval I \subseteq \mathbb{R} is uncountable $^{[iv]}$

 $[\]begin{array}{l} \overline{\text{liii}} \sum_{k=1}^{\infty} t_k := \sum_{k=1}^{n \to \infty} t_k \; \forall \; \text{sequence} \; \{t_k\}_{k=1}^{\infty} \equiv t_{k=1,2,\dots} \\ \overline{\text{liii}} \overline{\mathbb{R}} \equiv \left[-\infty,\infty\right] = \mathbb{R} \; \uplus \; \{\pm\infty\}, \; \text{with} \; \mathbb{R} \equiv \left(-\infty,\infty\right), \; \text{and} \; \uplus \; \text{a disjoint union} \\ \overline{\text{liv}} \mathring{\mu}_{\mathbb{I} \supseteq [a,b]} \geq \mathring{\mu}_{[a,b]} = b-a > o \end{array}$

1.1.3 Nonadditivity of outer meansure

1.3
$$\exists A \& B \subseteq \mathbb{R} : \mathring{\mu}_{A \uplus B} \neq \mathring{\mu}_A + \mathring{\mu}_B$$

Proof. Partition [-1,1] into equivalence classes $[a] := \{b \in [-1,1] \mid a-b \in \mathbb{Q}\}$, and pick $V \subseteq [-1,1] : |V \cap [a]| = 1 \ \forall a \in [-1,1].^{[v]}$ Then $\{q_k\}_{k=1}^{\infty} \equiv [-2,2] \cap \mathbb{Q}$ $\Rightarrow [-1,1] \subseteq \biguplus_{k=1}^{\infty} (q_k + V) \subseteq [-3,3]$

$$\Rightarrow [-1, 1] \subseteq \biguplus_{k=1}^{\infty} (q_k + V) \subseteq [-3, 3]$$

$$\Rightarrow \underbrace{\mathring{\mu}_{[-1,1]}}_{=2>0} \leq \mathring{\mu}_{\biguplus_{k=1}^{\infty}} (q_k + V) \xrightarrow{\text{mathematical induction}}_{\text{if } \mathring{\mu}_{A \uplus B} = \mathring{\mu}_A + \mathring{\mu}_B \ \forall A, B \subseteq \mathbb{R}} \sum_{k=1}^{\infty} \underbrace{\mathring{\mu}_{q_k + V}}_{\equiv \mathring{\mu}_V} = \underbrace{\left[\left\{q_k\right\}_{k=1}^{\infty}\right] \cdot \mathring{\mu}_V}_{\infty} \leq \underbrace{\mathring{\mu}_{[-3,3]}}_{=6<\infty}$$

$$\Rightarrow$$
 contradiction: $o < \infty \cdot (\mathring{\mu}_V = o) = o$

1.2 Measurable spaces & maps

1.2.1 Motivation & definition of σ -algebra

1.4
$$\underline{\mathbf{2}}^{\mathbb{R}} := \{S\}_{S \subseteq \mathbb{R}} \xrightarrow{\nexists \mu} \overline{\mathbb{R}}_{\geq 0} :$$

1. $\mu_{\mathsf{I}} = \ell_{\mathsf{I}} \forall open interval \mathsf{I} \subseteq \mathbb{R}$

2.
$$\mu_{\biguplus_{k=1}^{\infty} A_k} = \sum_{k=1}^{\infty} \mu_{A_k} \, \forall \{A_k \subseteq \mathbb{R}\}_{k=1}^{\infty}$$

3.
$$\mu_{t+A} = \mu_A \ \forall A \subseteq \mathbb{R} \ \forall t \in \mathbb{R}$$

Proof. μ has all μ 's properties used to prove theorem 1.3

1.2 $S \subseteq 2^X$ is a σ -algebra on a set X if

- 1. $X \setminus E \in S \forall E \in S$
- 2. $\emptyset \in \mathbb{S} \ (\iff X = X \setminus \emptyset \in \mathbb{S})$

$$\textbf{3.} \ \ \forall \{\mathsf{E}_k \in \mathcal{S}\}_{k=1}^{\infty}, \bigcup_{k=1}^{\infty} \mathsf{E}_k \in \mathcal{S} \ (\stackrel{\text{de Morgan's laws}}{\Longleftrightarrow} \bigcap_{k=1}^{\infty} \mathsf{E}_k = \mathsf{X} \backslash \bigcup_{k=1}^{\infty} \big(\mathsf{X} \backslash \mathsf{E}_k \big) \in \mathcal{S}).$$

(X, S) is then called a *measurable space*, and $E \in S$ *measurable sets*

E.g. $\{\emptyset, X\}$ and 2^X are σ -algebras on X.

1.5 $\bigcap_{S \in \{S' \subseteq 2^X \mid S' \text{ is a } \sigma\text{-algebra on } X \text{ containing } A\}} S$ is the smallest σ -algebra on X containing $A \subseteq 2^X$

Examples (of smallest σ -algebras)

- 1. $\{E \in X \mid E \text{ countable } \lor X \setminus E \text{ countable} \}$ on $X \text{ containing } \{\{x\}\}_{x \in X}$.
- 2. $\{\emptyset, \mathbb{R}, (0, 1), \mathbb{R}_{>0}, \mathbb{R}_{\leq 0} \uplus \mathbb{R}_{\geq 1}, \mathbb{R}_{\leq 0}, \mathbb{R}_{\geq 1}, \mathbb{R}_{<1}\}$ on \mathbb{R} containing $\{(0, 1), \mathbb{R}_{>0}\}$.

1.2.2 Borel's subsets of ℝ

1.3 The set \mathfrak{B} of **Borel's** $B \subseteq \mathbb{R}$ is the smallest σ -algebra on \mathbb{R} containing all open $G \subseteq \mathbb{R}$

Examples (of B \in \mathfrak{B}) • Every closed set, every countable $\{r_k \in \mathbb{R}\}_{k=1}^{\infty}$, and every half-open interval

• $\left\{r \in \mathbb{R} \mid \mathbb{R} \xrightarrow{f} \mathbb{R} \text{ is continuous at } r\right\}$ as an open-set intersection is 'Borel'.

[[]V] |V| denotes the order of a set V

1 MEASURES

1.2.3 Inverse images of measurable maps are measurable

1.4
$$X \xrightarrow{f} \mathbb{R}$$
 is *measurable* on a measurable space (X, S) if $f_{\forall B \in \Re}^{-1} \in S^{[vi]}$

- **E.g.** The only measurable $X \stackrel{f}{\to} \mathbb{R}$ on the measurable space $(X, \{\emptyset, X\})$ are constant maps.
- Every $X \xrightarrow{f} \mathbb{R}$ is measurable on the measurable space $(X, 2^X)$.
- $\mathbb{R} \stackrel{f}{\to} \mathbb{R}$ is measurable on the measurable space $(\mathbb{R}, \{\emptyset, \mathbb{R}, \mathbb{R}_{<0}, \mathbb{R}_{\geq 0}\})$ iff f is constant respectively on $\mathbb{R}_{<0}$ and on $\mathbb{R}_{>0}$.
- A characteristic map $X \xrightarrow{\chi_E} \mathbb{R}$ of $E \subseteq X$ with $\chi_{E; \forall x \in X} := \begin{cases} 1 & \text{if } x \in E \\ o & \text{if } x \notin E \end{cases}$ is measurable on a measurable space (X, S) iff $E \in S \Leftarrow \chi_{E; B \subseteq \mathbb{R}}^{-1} = \begin{cases} E & \text{if } o \notin B \ni 1 \\ X & \text{if } o \in B \ni 1 \\ \emptyset & \text{if } o \notin B \ni 1. \end{cases}$
- **1.6** $X \xrightarrow{f} \mathbb{R}$ is measurable on a measurable space $(X, S) \Leftarrow f_{(\forall a \in \mathbb{R}, \infty)}^{-1} \in S$

Proof.
$$\{A \subseteq \mathbb{R} \mid f_A^{-1} \in S\}$$
 is a σ -algebra containing \mathfrak{B}

Remark. The collection $\{\mathbb{R}_{>a}\}_{a\in\mathbb{R}}$ in the condition can be replaced by any $\mathcal{A}\subseteq\mathbf{2}^\mathbb{R}:\ \mathfrak{B}\subseteq$ the smallest σ -algebra containing $\mathcal{A}.$ *E.g.* $\mathcal{A}=\left\{\left(p,q\right]\right\}_{p,q\in\mathbb{Q}}\ \mathsf{V}=\left\{\left(q,z\right]\right\}_{q\in\mathbb{Q},z\in\mathbb{Z}}\ \mathsf{V}=\left\{\left(q,q+1\right)\right\}_{q\in\mathbb{Q}}\ \mathsf{V}=\left\{\mathbb{R}_{\geq q}\right\}_{q\in\mathbb{Q}}\ \textit{etc.}$ **1.7** $\{\mathsf{E}'\in\mathcal{S}\}_{\mathsf{E}'\subseteq\mathsf{X}'}=\{\mathsf{E}\cap\mathsf{X}'\}_{\mathsf{E}\in\mathcal{S}}\ \textit{is a σ-algebra on $\mathsf{X}'\in\mathcal{S}$ $\forall σ-algebra $\mathcal{S}\subseteq\mathbf{2}^\mathsf{X}$}$

1.5
$$\forall X \subseteq \mathbb{R}, X \xrightarrow{f} \mathbb{R}$$
 is Borel-measurable if $f_{\forall B \in \Re}^{-1} \in \Re$

1.8 Every continuous
$$B \xrightarrow{f} \mathbb{R}$$
 is \mathfrak{B} -measurable $\forall B \in \mathfrak{B}$

$$\begin{aligned} \textit{Proof.} \quad & f_{(\forall a \in \mathbb{R}, \infty)}^{-1} = \left(\bigcup_{b \in f_{\mathbb{R}>a}^{-1}} \left(b - \delta_b, b + \delta_b \right) \right) \cap B \in \mathfrak{B} \\ & \Leftarrow f_{\forall b \in B} > a \; \exists \, \delta_b > o : f_{\forall x \in \left(b - \delta_b, b + \delta_b \right) \cap B} > a \end{aligned} \qquad \square$$

1.9 Every increasing
$$B \xrightarrow{f} \mathbb{R}$$
 is \mathfrak{B} -measurable $\forall B \in \mathfrak{B}$

Proof.
$$f_{(\forall a \in \mathbb{R}, \infty)}^{-1} \stackrel{b=\inf_{f_{\mathbb{R}>a}^{-1}}}{=\!=\!=\!=} \mathbb{R}_{>b} \cap B \in \mathfrak{B}$$

1.10 $X \xrightarrow{g \circ f} \mathbb{R}$ is measurable on a measurable space $(X, \mathbb{S}) \ \forall \ \mathbb{S}$ -measurable $X \xrightarrow{f} \mathbb{R}$

$$\forall \mathfrak{B}$$
-measurable $Y \xrightarrow{g} \mathbb{R} : Y \supseteq f_X$

E.g. $X \stackrel{f}{\to} \mathbb{R}$ is measurable on a measurable space $(X, S) \Rightarrow$ so are $-f, f/2, |f|, f^2$ etc.

 $[\]overbrace{[\forall i]} \forall X \xrightarrow{f} Y, \text{ the } \textit{inverse image } f_A^{-1} := \{x \in X \mid f_x \in A\} = X \Big\backslash f_{Y \setminus A}^{-1} \text{ of } A \subseteq Y. \text{ Besides, } f_{\bigcirc_{A \in \mathcal{A}} A}^{-1} \xrightarrow{\bigcirc = \bigcup, \bigcap} \bigcirc_{A \in \mathcal{A}} f_A^{-1} \ \forall \mathcal{A} \subseteq \mathbf{2}^Y, \\ (g \circ f)_{\forall A \subseteq Z}^{-1} = f_{g_A^{-1}}^{-1} \ \forall Y \xrightarrow{g} Z$

 $[\]text{[$^{\text{vii}}Y measurable space } (X, \mathbb{S}) \ \forall x \in X, \ \mathsf{Dirac's measure} \ (\textit{cf. definition } 1.7) \ \mathcal{S} \xrightarrow{\delta_x : E \mapsto \chi_{E,x}} \overline{\mathbb{R}}_{\geq 0}$

1.11 $X \xrightarrow{f \& g} \mathbb{R}$ are measurable on a measurable space $(X, S) \Rightarrow$ so are $f \pm g$, fg and f/g $(g_{\forall x \in X} \neq o \text{ in the quotient})$

$$\textit{Proof.} \ \ fg = {}^{(f+g)^2 - f^2 - g^2} \! /_{\!\!\! 2}, \ \left(f + g \right)_{(\forall \, a \in \mathbb{R}, \infty)}^{-1} = \bigcup_{q \in \mathbb{Q}} \left(f_{\mathbb{R}_{>q}}^{-1} \cap g_{\mathbb{R}_{>a-q}}^{-1} \right) \in \mathbb{S}$$

1.12 $\exists f_{k \to \infty; \forall x \in X} \text{ for a sequence } \left\{ X \xrightarrow{f_k} \mathbb{R} \right\}_{k=1}^{\infty} \text{ of measurable maps on a measurable}$ $space\left(X,S\right)\Rightarrow S\text{-measurable }X\xrightarrow{f:x\mapsto f_{k\to\infty;x}}\mathbb{R}.$

$$\textit{Proof.} \ \ f_{\left(\forall a \in \mathbb{R}, \infty\right)}^{-1} = \bigcup_{j=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} f_{k; \mathbb{R}_{>a+1/j}}^{-1} \in \mathbb{S}$$

1.6 $X \xrightarrow{f} \overline{\mathbb{R}}$ is *measurable* on a measurable space (X, S) if $f_{\forall B \in \overline{\mathbb{Q}}}^{-1} \in S$, where $B \subseteq \overline{\mathbb{R}}$ is **Borel's** set if $B \cap \mathbb{R} \in \mathfrak{B}$ (and $\overline{\mathfrak{B}}$ is the collection of all such B)

1.13 A sequence $\left\{X \xrightarrow{f_k} \overline{\mathbb{R}}\right\}_{k=1}^{\infty}$ of measurable maps on a measurable space (X, S)

$$\Rightarrow \text{\mathbb{S}-measurable X} \xrightarrow{g \& h} \overline{\mathbb{R}} : g_{\forall x \in X} \coloneqq \inf_{\left\{f_{k;x}\right\}_{k=1}^{\infty}}, h_{\forall x \in X} \coloneqq \sup_{\left\{f_{k;x}\right\}_{k=1}^{\infty}}$$

Proof.
$$g_{\forall x \in X} = -\sup_{\{-f_{k,x}\}_{k=1}^{\infty}, h_{(\forall a \in \mathbb{R}, \infty)}^{-1} = \bigcup_{k=1}^{\infty} f_{k; \overline{\mathbb{R}}_{>a}}^{-1} \in \mathbb{S}$$

Measures & their properties

1.7 $\mathbb{S} \xrightarrow{\mu} \overline{\mathbb{R}}_{\geq 0}$ is a *measure* on a measurable space (X, \mathbb{S}) if $\mu_{\biguplus_{k=1}^{\infty} E_k} = \sum_{k=1}^{\infty} \mu_{E_k}$ $\forall \{E_k \in S\}_{k=1}^{\infty}. (X, S, \mu) \text{ is then called a } \textit{measure space}$ Remark. $\mu_{\mathsf{E}=\mathsf{E}\uplus\varnothing\uplus\varnothing\uplus\cdots}=\mu_{\mathsf{E}}+\sum_{k=2}^{\infty}\mu_{\varnothing}\Rightarrow\mu_{\varnothing}=\mathsf{o}.$ **1.14** \forall measure space $(X, S, \mu) \forall \{E_k \in S\}_{k=1}^{\infty}$

1.
$$E_1 \subseteq E_2 \Rightarrow \mu_{E_1} \le \mu_{E_2} \land \mu_{E_2 \setminus E_1} \xrightarrow{\underline{\mu_{E_1} < \infty}} \mu_{E_2} - \mu_{E_1}$$

2.
$$\mu_{\bigcup_{k=1}^{\infty} E_k} \leq \sum_{k=1}^{\infty} \mu_{E_k}$$

3.
$$E_{\forall k \in \mathbb{Z}_{>0}} \subseteq E_{k+1} \Rightarrow \mu_{\bigcup_{k=1}^{\infty} E_k} = \mu_{E_{k \to \infty}}$$

$$4. \ \mathsf{E}_{\forall \, \mathsf{k} \in \mathbb{Z}_{> o}} \supseteq \mathsf{E}_{\mathsf{k}+1} \wedge \mu_{\mathsf{E}_1} < \infty \Rightarrow \mu_{\bigcap_{\mathsf{k}=1}^\infty \mathsf{E}_{\mathsf{k}}} = \mu_{\mathsf{E}_{\mathsf{k} \to \infty}}$$

5.
$$\mu_{E=E_1\cap E_2} < \infty \Rightarrow \mu_{E_1\cup E_2} = \mu_{E_1} + \mu_{E_2} - \mu_{E_1}$$

Proof. 1. (a) $\mu_{E_2=E_1\uplus(E_2\setminus E_1)} = \mu_{E_1} + \mu_{E_2\setminus E_1} \geq \mu_{E_1}$

(b)
$$\mu_{E_1} < \infty \Rightarrow \mu_{E_2} - \mu_{E_1} \ge \mu_{E_1} - \mu_{E_1} = 0$$

$$\text{2. } \mu_{\bigcup_{k=1}^{\infty} \mathsf{E}_k = \biguplus_{k=1}^{\infty} \left(\mathsf{E}_k \backslash \mathsf{D}_k \right)} = \sum_{k=1}^{\infty} \left(\mu_{\mathsf{E}_k \backslash \mathsf{D}_k} \leq \mu_{\mathsf{E}_k} \right) \text{with } D_{\forall \, k \in \mathbb{Z}_{>0}} = \bigcup_{j=1}^{k-1} \mathsf{E}_k \xrightarrow{\underline{k=1}} \varnothing$$

3. Say $\mu_{\mathsf{E}_{\forall k \in \mathbb{Z}_{>0}}} < \infty$, as otherwise both sides of the equation are ∞ . Let $\mathsf{E}_{\mathsf{o}} = \emptyset$, $\mu_{\bigcup_{k=1}^{\infty} \mathsf{E}_{k} = \biguplus_{j=1}^{\infty} \left(\mathsf{E}_{j} \setminus \mathsf{E}_{j-1} \right)} = \left(\sum_{j=1}^{\infty} \equiv \sum_{j=1}^{k \to \infty} \right) \left(\mu_{\mathsf{E}_{j} \setminus \mathsf{E}_{j-1}} = \mu_{\mathsf{E}_{j}} - \mu_{\mathsf{E}_{j-1}} \right) = \mu_{\mathsf{E}_{k \to \infty}}$

$$\textbf{4.} \ \ \mu_{\mathsf{E}_1} - \mu_{\bigcap_{k=1}^\infty \mathsf{E}_k} = \mu_{\mathsf{E}_1 \setminus \bigcap_{k=1}^\infty \mathsf{E}_k = \bigcup_{k=1}^\infty (\mathsf{E}_1 \setminus \mathsf{E}_k)} \xrightarrow{\text{property 3}} \mu_{\mathsf{E}_1 \setminus \mathsf{E}_{k \to \infty}} = \mu_{\mathsf{E}_1} - \mu_{\mathsf{E}_{k \to \infty}}$$

5.
$$\mu_{E_1 \cup E_2 = [\biguplus_{k=1}^2 (E_k \setminus E)] \uplus E} = \left[\sum_{k=1}^2 \left(\mu_{E_k \setminus E} = \mu_{E_k} - \mu_{E} \right) \right] + \mu_{E} = \mu_{E_1} + \mu_{E_2} - \mu_{E}$$

 $^{[\}text{$^{\text{Viii}}$}]X \overset{f}{\to} \overline{\mathbb{R}} \text{ is measurable on a measurable space } \big(X, \mathbb{S}\big) \Leftarrow f_{\left(\forall a \in \overline{\mathbb{R}}, \infty\right]}^{-1} \in \mathbb{S}$

5 1 MEASURES

1.4 LEBESGUE'S measure

1.15
$$\mathring{\mu}_{A \uplus B} = \mathring{\mu}_{\forall A \subseteq \mathbb{R}} + \mathring{\mu}_{\forall B \in \mathfrak{R}}$$
Proof. Need to show $\mathring{\mu}_{A \uplus B} \ge \mathring{\mu}_A + \mathring{\mu}_B$.

- 1. $\mathring{\mu}_{A \uplus B} = \mathring{\mu}_{\forall A \subseteq \mathbb{R}} + \mathring{\mu}_{\forall \text{ open } B \subseteq \mathbb{R}}$ Say $\mathring{\mu}_{B} < \infty$.
- (a) If B is an open interval $(a, b) \subseteq \mathbb{R}$, then \forall open cover

$$\underbrace{\left\{a+\frac{(-\varepsilon,\varepsilon)}{J_4},b+\frac{(-\varepsilon,\varepsilon)}{J_4}\right\}}_{I_o} \cup \{\underbrace{I_k \cap \mathbb{R}_{< a}}_{J_k}\}_{k=1}^{\infty} \uplus \{\underbrace{I_k \cap (a,b)}_{K_k}\}_{k=1}^{\infty} \uplus \{\underbrace{I_k \cap \mathbb{R}_{> b}}_{L_k}\}_{k=1}^{\infty}$$

$$\text{of } A \uplus B\text{, } \textstyle \sum_{k=o}^{\infty} \ell_{I_k} \xrightarrow{\frac{\{K_k\}_{k=1}^{\infty} \supseteq B}{I_o \cup \{J_k, L_k\}_{k=1}^{\infty} \supseteq A}} \underbrace{\frac{\epsilon \to o}{\ell_{I_o}} + \sum_{k=1}^{\infty} \left(\ell_{J_k} + \ell_{L_k}\right)}_{\geq \mathring{\mu}_A} + \underbrace{\sum_{k=1}^{\infty} \ell_{K_k}}_{\geq \mathring{\mu}_B} \Rightarrow \mathring{\mu}_{A \uplus B} \geq \mathring{\mu}_A + \mathring{\mu}_B.$$

(b) If
$$B = \biguplus_{k=1}^{\infty} I_k$$
 for some open sequence $\{I_k \subseteq \mathbb{R}\}_{k=1}^{\infty}$, then $\mathring{\mu}_{A \uplus B} \ge \mathring{\mu}_{A \biguplus_{k=1}^{\forall z \in \mathbb{Z}_{>0}} I_k} = \mathring{\mu}_A + \sum_{i=1}^z \ell_{I_k} \Rightarrow \mathring{\mu}_{A \uplus B} \ge \mathring{\mu}_A + \left(\sum_{k=1}^{\infty} \ell_{I_k} \ge \mathring{\mu}_B\right)$.

by property (a) and induction on z

$$\begin{array}{l} \textbf{2.} \quad \mathring{\mu}_{A \uplus B} = \mathring{\mu}_{\forall A \subseteq \mathbb{R}} + \mathring{\mu}_{\forall \, \text{closed } B \subseteq \mathbb{R}} \quad \forall \, \text{open cover} \, \{I_k \subseteq \mathbb{R}\}_{k=1}^{\infty} \, \text{of} \, A \uplus \, B, \\ \sum_{k=1}^{\infty} \ell_{I_k} \geq \mathring{\mu}_{G = \bigcup_{k=1}^{\infty} I_k = (G \setminus B) \uplus B} \, \frac{\text{step 1}}{G \setminus B = G \cap (\mathbb{R} \setminus B) \, \text{is open}} \, \mathring{\mu}_{G \setminus B \supseteq A} + \mathring{\mu}_{B} \geq \mathring{\mu}_{A} + \mathring{\mu}_{B} \\ \Rightarrow \mathring{\mu}_{A \uplus B} \geq \mathring{\mu}_{A} + \mathring{\mu}_{B}. \end{array}$$

3. $\mathcal{L} := \{ \mathsf{L} \subseteq \mathbb{R} \mid \forall \, \epsilon > \mathsf{o} \, \exists \, \mathsf{closed} \, \mathsf{F} \subseteq \mathsf{L} : \mathring{\mu}_{\mathsf{L} \setminus \mathsf{F}} < \epsilon \} \text{ is a } \sigma\text{-algebra containing } \mathbb{R}'s \text{ all closed, and thus all open, all Borel's (and all o-outer-measure) subsets } \mathsf{Since} \ \mathfrak{L} \ (\ni \varnothing, \, \mathsf{as} \, \varnothing \, \text{is both open and closed}) \, \textit{is closed under} \$

$$\begin{array}{ll} \textit{Countable intersection} & \mathsf{L}_{o} = \bigcap_{k=1}^{\infty} \mathsf{L}_{k} \in \mathfrak{L} \ \forall \{\mathsf{L}_{k} \in \mathfrak{L}\}_{k=1}^{\infty} \Leftarrow \forall \, \varepsilon > o \\ \exists \ \text{closed} \ \mathsf{F}_{\forall \, k \in \mathbb{Z}_{>o}} \subseteq \mathsf{L}_{k} : \mathring{\mu}_{\mathsf{L}_{k} \setminus \mathsf{F}_{k}} < {}^{\varepsilon}\!/_{2^{k}} \ \land \ \mathring{\mu}_{\mathsf{L}_{o} \setminus (\text{closed} \ \bigcap_{k=1}^{\infty} \mathsf{F}_{k}) = \bigcup_{k=1}^{\infty} (\mathsf{L}_{o} \setminus \mathsf{F}_{k}) \subseteq \bigcup_{k=1}^{\infty} (\mathsf{L}_{k} \setminus \mathsf{F}_{k})} < \varepsilon. \end{array}$$

Complementation $\forall L \in \mathcal{L} \ \forall \epsilon > o$

(a) If
$$\mathring{\mu}_{L} < \infty$$
, then \exists closed $F \subseteq L \subseteq \text{open } G : \epsilon$ $> (e/_2 > \mathring{\mu}_{G} - \mathring{\mu}_{L}) + (e/_2 > \mathring{\mu}_{L \setminus F} = \mathring{\mu}_{L} - \mathring{\mu}_{F}) = \mathring{\mu}_{G} - \mathring{\mu}_{F}$ $= \mathring{\mu}_{G \setminus F \supseteq G \setminus L = (\mathbb{R} \setminus L \supseteq \mathbb{R} \setminus G) \setminus (\mathbb{R} \setminus G)} \stackrel{\triangleright}{=} \mathring{\mu}_{(\mathbb{R} \setminus L) \setminus (\text{closed } \mathbb{R} \setminus G)}.$

$$\begin{array}{l} \text{(b) If } \mathring{\mu}_L = \infty, \, \mathring{\mu}_{L_{\forall k \in \mathbb{Z}_{>0}} = L \cap [-k,k] \in \mathcal{L}} < \infty \\ \xrightarrow{\text{step (a)}} \mathbb{R} \big\backslash L_{\forall k \in \mathbb{Z}_{>0}} \in \mathcal{L} \Rightarrow \mathbb{R} \big\backslash L = \bigcap_{k=1}^{\infty} \big(\mathbb{R} \big\backslash L_k \big) \in \mathcal{L}. \end{array}$$

4.
$$\forall \epsilon > o \exists closed F \subseteq B : \mathring{\mu}_{B \setminus F} < \epsilon \land \mathring{\mu}_{A \uplus B} \ge \mathring{\mu}_{A \uplus F} = \mathring{\mu}_A + (\mathring{\mu}_F = \mathring{\mu}_B - \mathring{\mu}_{B \setminus F} \ge \mathring{\mu}_B)$$

1.16
$$\exists B \subseteq \mathbb{R} : \mathring{\mu}_B < \infty \land B \text{ is not Borel's set}$$

1.17
$$(\mathbb{R}, \mathfrak{B}, \mathring{\mu})$$
 is a measure space

$$\textit{Proof.} \ \ \forall \{B_k \in \mathfrak{B}\}_{k=1}^{\infty}, \ \mathring{\mu}_{\biguplus_{k=1}^{\infty}} B_k \geq \underbrace{\mathring{\mu}_{\biguplus_{k=1}^{\forall z \in \mathbb{Z}_{\geq 0}}} B_k} = \sum_{k=1}^{z} \mathring{\mu}_{B_k} \Rightarrow \mathring{\mu}_{\biguplus_{k=1}^{\infty}} B_k \geq \sum_{k=1}^{\infty} \mathring{\mu}_{B_k}$$
 by theorem 1.15 and induction on z

1.8 $A \subseteq \mathbb{R}$ is **Lebesgue**-measurable

$$\iff \exists B^- \in \mathfrak{B} : B^- \subseteq A \land \mathring{\mu}_{A \setminus B^-} = o$$

$$\iff \forall \epsilon > 0 \exists \text{ closed } \mathsf{F} \subseteq \mathsf{A} : \mathring{\mu}_{\mathsf{A} \setminus \mathsf{F}} < \epsilon$$

$$\iff \exists \{ \text{closed } \mathsf{F}_k \subseteq \mathsf{A} \}_{k=1}^{\infty} : \mathring{\mu}_{\mathsf{A} \setminus \bigcup_{k=1}^{\infty} \mathsf{F}_k} = \mathsf{o}$$

6

$$\iff \exists \{ \text{open } G_k \supseteq A \}_{k=1}^{\infty} : \mathring{\mu}_{\bigcap_{k=1}^{\infty} G_k \setminus A} = o$$

$$\iff \forall \epsilon > o \exists open G \supseteq A : \mathring{\mu}_{G \setminus A} < \epsilon$$

$$\iff \exists B^+ \in \mathfrak{B} : B^+ \supseteq A \land \mathring{\mu}_{B^+ \setminus A} = o$$

$$\iff \; \mathring{\mu}_{(-n,n)\cap A} + \mathring{\mu}_{(-n,n)\backslash A} = 2n \; \forall \, n \in \mathbb{Z}_{>o}$$

$$\textit{Proof.} \ \mathring{\mu}_{\mathsf{A} \backslash \mathsf{B}^{-}} = \mathsf{o} = \mathring{\mu}_{\mathsf{B}^{+} \backslash \mathsf{A}} \xrightarrow{\overset{\mathsf{B}^{\pm} \in \mathfrak{B} \subseteq \mathfrak{L}}{(\mathsf{A} \backslash \mathsf{B}^{-}) \uplus \mathsf{B}^{-} = \mathsf{A} = \mathsf{B}^{+} \cap \left[\mathbb{R} \backslash (\mathsf{B}^{+} \backslash \mathsf{A}) \right]}} \mathsf{A} \backslash \mathsf{B}^{-} \ \& \ \mathsf{B}^{+} \backslash \mathsf{A} \ \& \ \mathsf{A} \ \& \ \mathsf{R} \backslash \mathsf{A} \in \mathfrak{L}$$

$$\xrightarrow{\exists \mathsf{F} \subseteq \bigcup_{k=1}^{\infty} \mathsf{F}_{k} \subseteq \mathsf{A} \subseteq \bigcap_{k=1}^{\infty} \mathsf{G}_{k} \subseteq \mathsf{G} } \mathring{\mu}_{\mathsf{A} \setminus \mathsf{F}} \& \mathring{\mu}_{\mathsf{G} \setminus \mathsf{A} = (\mathbb{R} \setminus \mathsf{A} \supseteq \mathbb{R} \setminus \mathsf{G}) \setminus (\mathbb{R} \setminus \mathsf{G})} < \varepsilon \to \mathsf{o}^{+} \ \textit{etc.}$$

Remark. The σ -algebra $\mathcal L$ in theorem 1.15.3 is the collection of $\mathbb R$'s all $\mathcal L$ -measurable subsets.

1.18
$$(\mathbb{R}, \mathcal{L}, \mathring{\mu})$$
 is a measure space (dubbed Lebesgue's)

$$\begin{aligned} \textit{Proof.} \ \ \forall \{\mathsf{L}_k \in \mathcal{L}\}_{k=1}^{\infty} \ \exists \ \big\{ \mathsf{B}_k \in \mathfrak{B} \ \big| \ \mathsf{L}_k = \mathsf{B}_k \uplus \big(\mathsf{L}_k \big\backslash \mathsf{B}_k \big) \big\}_{k=1}^{\infty} : \mathring{\mu}_{\mathsf{L}_{\forall k \in \mathbb{Z}_{\geq 0}} \big\backslash \mathsf{B}_k} = o \\ \land \ \mathring{\mu}_{\biguplus_{k=1}^{\infty} \mathsf{L}_k} \geq \mathring{\mu}_{\biguplus_{k=1}^{\infty} \mathsf{B}_k} \xrightarrow{\text{theorem 1.17}} \sum_{k=1}^{\infty} \big(\mathring{\mu}_{\mathsf{B}_k} \geq \mathring{\mu}_{\mathsf{L}_k} \big) \end{aligned} \quad \Box$$

Remark. $\forall A \subseteq \mathbb{R}$ with $\mathring{\mu}_A < \infty$, $A \in \mathcal{Z} \Longleftrightarrow \forall \varepsilon > o \exists G = \biguplus_{k=1}^{n < \mathbb{Z}_{>0}} G_k$ with $G_{k=1,\dots n}$ bounded open intervals: $\mathring{\mu}_{A \setminus G} + \mathring{\mu}_{G \setminus A} < \varepsilon$. Practically, this means that every $B \in \mathfrak{B}$ with $\mathring{\mu}_B < \infty$ is almost a finite disjoint union of bounded open intervals.

1.5 Convergence of measurable maps

1.5.1 Pointwise convergence is almost uniform convergence

1.9
$$\left\{X \xrightarrow{f_k} \mathbb{R}\right\}_{k=1}^{\infty}$$
 converges to $X \xrightarrow{f} \mathbb{R}$

Pointwise (on X) if $f_{k\to\infty;\forall x\in X} = f_x$

$$\begin{array}{ll} \textit{\textbf{Uniformly}} & \text{if } \forall \, \varepsilon > o \, \exists \, n \in \mathbb{Z}_{>o} : \left| f_{\forall k \geq n; \forall x \in X} - f_x \right| < \varepsilon \\ \textbf{\textbf{E.g.}} & \left\{ [-1,1] \xrightarrow{f_k} \mathbb{R} \, \middle| \, f_{k;x} = \left\{ \begin{matrix} 1-k|x| & \text{if } |x| \in \left[o, \frac{1}{k}\right] \\ o & \text{if } |x| \in \left(\frac{1}{k}, 1\right] \end{matrix} \right\}_{k=1}^{\infty} \end{array} \right. \text{ converges pointwise }$$

but not uniformly to $[-1, 1] \xrightarrow{f: x \mapsto \delta_{o, x}} \mathbb{R}$.

1.19
$$\left\{X \xrightarrow{f_k} \mathbb{R} \mid f_{\forall j \in \mathbb{Z}_{>0}} \text{ continuous at } x \in X\right\}_{k=1}^{\infty} \text{ converges uniformly to } X \xrightarrow{f} \mathbb{R}$$
 \Rightarrow f continuous at x

$$\begin{split} &\textit{Proof.} \ \, \forall \, \varepsilon > o \, \exists \, \delta > o : \left| f_{\forall x' \in (x-\delta,x+\delta) \cap X} - f_x \right| < \varepsilon, \, \text{because} \\ &\left| f_{x'} - f_x \right| \leq \left| f_{x'} - f_{j;x'} \right| + \left| f_{j;x'} - f_{j;x} < \varepsilon' \right| + \left| f_{j;x} - f_x \right| \, \forall j \in \mathbb{Z}_{>o} \, \, \forall \, \varepsilon' \in \left(o,\varepsilon \right) \\ &\xrightarrow{\left| f_{\exists n \in \mathbb{Z}_{>o}; \forall x'' \in X} - f_{x''} \right| < \left(\varepsilon - \varepsilon' \right) \middle/_2}} \left| f_{x'} - f_x \right| < \left| f_{x'} - f_{n';x'} \right| + \varepsilon' + \left| f_{n;x} - f_x \right| < \varepsilon \end{split}$$

Theorem (Egorov's) \forall measure $\mathbb{S} \xrightarrow{\mu} \mathbb{R}_{\geq 0}$ on a measurable space $(X, \mathbb{S}) \exists E \subseteq X : \mu_{X \setminus E} \in [o, \forall \epsilon > o) \land \left\{ \mathbb{S}\text{-measurable } X \xrightarrow{f_k} \mathbb{R} \right\}_{k=1}^{\infty} \text{converges to } X \xrightarrow{f: x \mapsto f_{k \to \infty; x}} \mathbb{R} \text{ uniformly on } E$

$$\textit{Proof.} \ \ f_{k \to \infty; \forall x \in X} = f_x \ \ \xrightarrow{g_k \equiv f_k - f} \ \ \bigcup_{m=1}^\infty \left(A_{m; \forall n \in \mathbb{Z}_{>0}} := \bigcap_{k=m}^\infty g_{k; \left(-^1/_n, ^1/_n \right)}^{-1} \right) = X, \quad \text{where}$$

7 1 MEASURES

 $A_{m;n} \in \mathbb{S} \text{ as } X \xrightarrow{g_{\forall k \in \mathbb{Z}}} \mathbb{R} \text{ is S-measurable (by theorems 1.12, 1.11), and } \left\{A_{m,n}\right\}_{m=1}^{\infty} \text{ is an increasing sequence} \xrightarrow{\text{theorem 1.14.3}} \mu_X = \mu_{A_{m\to\infty;n}}; \textit{i.e. } \mu_X - \mu_{\exists m_n \in \mathbb{Z}_{>0}} < \varepsilon/_{2^n}. \text{ Thus } \mu_X \setminus (E = \bigcap_{n=1}^{\infty} A_{m_n;n}) = \bigcup_{n=1}^{\infty} (X \setminus A_{m_n;n}) \leq \sum_{n=1}^{\infty} \mu_X \setminus A_{m_n;n} < \varepsilon, \text{ and } \{f_k\}_{k=1}^{\infty} \text{ converges to } f \text{ uniformly on } E \subseteq A_{m_n;\forall n \in \mathbb{Z}_{>0}}, \text{ as } \forall \varepsilon' > o \ \exists \ n \in \mathbb{Z}_{>0}: \left|g_{\forall k \in \mathbb{Z}_{>0};\forall x \in E}\right| < 1/_n < \varepsilon' \qquad \Box$

1.5.2 Approximation by simple maps

1.10 A map is simple if it takes only finitely many values

E.g. A simple $X \xrightarrow{f = \sum_{k=1}^n c_k \chi_{E_k}} \mathbb{R}$ (measurable) on a measurable space (X, S), with $c_{k=1,\dots,n}$ the distinct values $\in \mathbb{R}_{\neq 0}$ of f, and $E_{k=1,\dots,n} = f_{\{c_k\}}^{-1} \in S$.

1.20 \forall measurable $X \stackrel{f}{\rightarrow} \overline{\mathbb{R}}$ on a measurable space (X, S)

 $\exists \left\{ \text{simple S-measurable} X \xrightarrow{f_k} \mathbb{R} \; \middle| \; \left| f_{\forall j \in \mathbb{Z}_{>0}; \forall x \in X} \right| \leq \left| f_{j+1;x} \right| \leq \left| f_x \right| \right\}_{k=1}^{\infty} \; \text{converging pointwise (uniformly for bounded f) to f}$

wise (uniformly for bounded f) to f $\textbf{E.g.} \left\{ f_{k;\forall x \in X} = \left(\left| f_{k;x} \right| = \begin{cases} m/_{2^k} & \text{if } \exists \ m \in \mathbb{Z} : \left| f_x \right| \in [o,k] \cap [m,m+1)/_{2^k} \\ k & \text{if } \left| f_x \right| \in (k,\infty) \end{cases} \right. \text{ is a desired sequence of simple S-measurable ($f_{[o,k] \cap [m,m+1)/_{2^k}$}^{-1} \in S etc. \Leftarrow S-measurable$

f) maps: $\left|f_{\forall k \in \mathbb{Z}_{>0}; \forall x \in X} - f_x\right| \le \frac{1}{2^k}$ if $\left|f_x\right| \in [o, k]$.

1.21 \forall continuous $F \xrightarrow{f} \mathbb{R}$ on a closed $F \subseteq \mathbb{R} \exists$ continuous $\mathbb{R} \xrightarrow{\bar{f}} \mathbb{R} : \bar{f} \Big|_{F} = f$

E.g. $\exists \{ \text{open interval } I_k \}_{k=1}^{\infty} : \mathbb{R} \setminus F = \biguplus_{k=1}^{\infty} I_k. \ \overline{f} \Big|_{I_k} := f_a \ \lor := \text{linear map connecting } f_b \ \& \ f_c \ \text{for } I_{k \in \mathbb{Z}_{>0}} = \pm (a, \infty) \ \lor = (b, c).$

1.5.3 Borel's measurability is almost continuity

Theorem (Lusin's) \mathfrak{B} -measurable $E \xrightarrow{f} \mathbb{R} \Rightarrow \forall \epsilon > o \exists$

• closed $F \subseteq \mathbb{R} : \mathring{\mu}_{E \setminus F} < \epsilon$

• continuous $\mathbb{R} \xrightarrow{\bar{f}} \mathbb{R} : \bar{f}|_F = f|_F$

Proof. 1. Prove the theorem for $\left(E \xrightarrow{f} \mathbb{R}\right) = \left(\mathbb{R} \xrightarrow{\bar{f}} \mathbb{R}\right)$ 1st.

(a) Say $f = \sum_{k=1}^n c_k \chi_{B_k} \frac{c_o = 0}{B_o = \mathbb{R} \setminus \bigcup_{k=1}^n B_k \in \mathfrak{B}} \sum_{k=0}^n c_k \chi_{B_k}$ of distinct $c_{k=1,\dots,n} \in \mathbb{R}_{\neq 0}$ and disjoint $B_{k=0,\dots,n} \in \mathfrak{B}$. $\forall \varepsilon > 0$, theorem 1.8 \Rightarrow ' $\forall k \in \{1,\dots,n\}$ \exists closed $F_k \subseteq B_k \subseteq 0$ open $G_k : \mathring{\mu}_{G_k \setminus B_k} < \varepsilon/_{2n} > \mathring{\mu}_{B_k \setminus F_k} \wedge \mathring{\mu}_{G_k \setminus F_k = (G_k \setminus B_k) \uplus (B_k \setminus F_k)} < \varepsilon/_n$ '

 $\Rightarrow closed \ F \xrightarrow{F_o = \mathbb{R} \setminus \bigcup_{k=1}^n G_k} \ \biguplus_{k=o}^n F_k : \mathring{\mu}_{\mathbb{R} \setminus F \subseteq \bigcup_{k=1}^n (G_k \setminus F_k)} < \varepsilon$

 $\land f|_F \text{ continuous (as } f|_{F_{\forall k \in \{0,\dots,n\}} \subseteq B_k} \equiv c_k \text{ is continuous)}$

(b) $\forall \mathfrak{B}$ -measurable $\mathbb{R} \xrightarrow{f} \mathbb{R}$

 $\text{i. Theorem 1.20} \Rightarrow \exists \left\{ \text{simple } \mathfrak{B}\text{-measurable} \mathbb{R} \stackrel{f_k}{\rightarrow} \mathbb{R} \right\}_{k=1}^{\infty} : f_{k \rightarrow \infty; \forall x \in X} = f_x. \ \forall \, \varepsilon > o,$

$$\begin{split} \text{step 1.(a)} &\Rightarrow \text{`}\forall\, k \in \mathbb{Z}_{>o} \; \exists \; \text{closed} \; C_k \subseteq \mathbb{R} : \mathring{\mu}_{\mathbb{R} \setminus C_k} < {}^\varepsilon\!/_{_2^{k+1}} \; \wedge \; f_k \big|_{C_k} \; \text{continuous'} \\ &\Rightarrow f_{\forall\, k \in \mathbb{Z}_{>o}} \big|_{C = \bigcap_{j=1}^\infty C_j} \; \text{continuous:} \; \mathring{\mu}_{(\mathbb{R} \setminus C) = \bigcup_{k=1}^\infty (\mathbb{R} \setminus C_k)} < {}^\varepsilon\!/_2. \end{split}$$

$$\begin{split} &\text{ii. } \forall \, n \in \mathbb{Z}_{>o}, \quad f_{k \to \infty; \forall x \in (n,n+1)} = f_x \quad \xrightarrow{\text{Egorov's theorem}} \quad \exists \, B_n \in \mathfrak{B}: \quad \mathring{\mu}_{(n,n+1) \setminus \left(B_n \subseteq (n,n+1)\right)} \\ &< \varepsilon_{/_2 \mid n \mid +3} \, \, \Lambda \, \left\{ f_k \Big|_{B_n} \right\}_{k=1}^{\infty} \text{ converges to } f \Big|_{B_n} \, \text{ uniformly on } C \cap B_n. \end{split}$$

$$\begin{split} &\text{iii. } f_{\forall k \in \mathbb{Z}_{>o}}\big|_{(C \cap B_{\forall n \in \mathbb{Z}_{>o}}) \subseteq C \subseteq C_k} \text{ continuous} \xrightarrow{\text{theorem 1.19}} \big(f = f_{k \to \infty}\big)\big|_{C \cap B_n} \text{ continuous} \\ &\Rightarrow f\big|_{D = \bigcup_{n \in \mathbb{Z}_{>o}} \big(C \cap B_n\big)} \text{ continuous, where theorem 1.8} \end{split}$$

$$\Rightarrow \mathring{\mu}_{D\backslash\exists \text{ closed }F\subseteq D\in\mathscr{Z}} < \underbrace{\varepsilon - \mathring{\mu}_{\mathbb{R}\backslash D=(\mathbb{R}\backslash C)\cup\left[\mathbb{R}\backslash\left(\bigcup_{n\in\mathbb{Z}_{>0}}B_{n}\right)\subseteq\mathbb{Z}_{>0}\cup\left(\bigcup_{n\in\mathbb{Z}_{>0}}(n,n+1)\backslash B_{n}\right)\right]}_{>0}}$$

$$\wedge \ \mathring{\mu}_{\mathbb{R}\backslash \mathsf{F}=(\mathbb{R}\backslash \mathsf{D})\uplus(\mathsf{D}\backslash \mathsf{F})} = \mathring{\mu}_{\mathbb{R}\backslash \mathsf{D}} + \mathring{\mu}_{\mathsf{D}\backslash \mathsf{F}} < \epsilon \ \wedge \ \mathsf{f}\big|_{\mathsf{F}\subseteq \mathsf{D}} \ \mathsf{continuous}.$$

2. $\forall \epsilon > 0$, consider an extension $\mathbb{R} \xrightarrow{\tilde{f}:=\chi_E \cdot f} \mathbb{R}$ of $E \xrightarrow{f} \mathbb{R}$, then step 1

$$\Rightarrow$$
 ' \exists closed $C \subseteq \mathbb{R} : \mathring{\mu}_{\mathbb{R} \setminus \mathbb{C}} < \epsilon \land \tilde{f}|_{C}$ continuous'

$$\Rightarrow \text{`}\exists \text{ closed } F \subseteq C \cap E : \mathring{\mu}_{(C \cap E) \setminus F} < \underbrace{\varepsilon - \mathring{\mu}_{\mathbb{R} \setminus C}}_{>o} \land \mathring{\mu}_{E \setminus F = [(C \cap E) \setminus F] \uplus [(E \setminus C) \subseteq (\mathbb{R} \setminus C)]} < \varepsilon$$

$$\wedge \tilde{f}\big|_{F\subseteq E} = f\big|_F \text{ continuous'}$$

$$\xrightarrow{\text{theorem 1.21}} \exists \text{ continuous } \mathbb{R} \xrightarrow{\bar{f}} \mathbb{R} : \bar{f} \Big|_{F} = f$$

Remark. $\biguplus_{k=1,...,n} F_k \xrightarrow{f} \mathbb{R}$ with closed $F_{k=1,...,n} \subseteq \mathbb{R}$ and continuous $f|_{F_{k=1,...,n}}$ is continuous.

1.5.4 LEBESGUE'S measurability is almost Borel's measurability

1.11
$$\forall X \subseteq \mathbb{R}, X \xrightarrow{f} \mathbb{R}$$
 is **Lebesgue**-measurable if $f_{\forall B \in \mathfrak{B}}^{-1} \in \mathfrak{L}$

1.22
$$\forall \mathcal{L}$$
-measurable $\mathbb{R} \xrightarrow{f} \mathbb{R} \exists \mathcal{B}$ -measurable $\mathbb{R} \xrightarrow{g} \mathbb{R} : \mathring{\mu}_{\{x \in \mathbb{R} \mid g_x \neq f_x\}} = 0$

$$\begin{array}{l} \textit{Proof.} \ \, \pounds\text{-measurable} \ \, \mathbb{R} \xrightarrow{f} \mathbb{R} \xrightarrow{\text{theorem 1.20}} \exists \left\{ \text{simple } \pounds\text{-measurable} \mathbb{R} \xrightarrow{f_k} \mathbb{R} \right\}_{k=1}^{\infty} : \\ f_{k \to \infty; \forall x \in X} = f_x \ \, \land \ \, f_{\forall k \in \mathbb{Z}_{>0}} = \sum_{j=1}^{\exists n \in \mathbb{Z}_{>0}} c_j \chi_{A_j} \ \, \text{of distinct } c_{j=1,\dots,n} \in \mathbb{R}_{\neq 0} \ \, \text{and disjoint} \\ A_{j=1,\dots,n} \in \pounds. \ \, \text{Theorem 1.8} \Rightarrow \forall \forall j \in \{1,\dots,n\} \ \, \exists \ \, B_j \in \Re: \mathring{\mu}_{A_j \setminus \left(B_j \subseteq A_j\right)} = o' \\ \Rightarrow \Re\text{-measurable } g_{\forall k \in \mathbb{Z}_{>0}} = \sum_{j=1}^{n} c_j \chi_{B_j} : \mathring{\mu}_{\epsilon_k = \left\{x \in \mathbb{R} \mid g_{k,x} \neq f_{k,x}\right\}} = o. \ \, \text{Thus} \\ g_{k \to \infty; \forall x \in E} = f_x \ \, \text{with } \mathring{\mu}_{\mathbb{R} \setminus \left(E = \left\{x \in \mathbb{R} \mid \exists g_{k \to \infty;x}\right\}\right) \subseteq \bigcup_{k=1}^{\infty} \varepsilon_k} = o \Rightarrow \exists \ \, g_{\forall x \in \mathbb{R}} = \left(\chi_E \cdot g_{k \to \infty}\right)_x \\ \xrightarrow{\Re\text{-measurable} \left(\chi_E \cdot g_{\forall k \in \mathbb{Z}_{>0}}\right)} \Re\text{-measurable } g: \mathring{\mu}_{\left\{x \in \mathbb{R} \mid g_x \neq f_x\right\} \subseteq \bigcup_{k=1}^{\infty} \varepsilon_k} = o \end{array}$$

INTEGRATION

Integration 2

9

Integration with respect to a measure 2.1

Integration of nonnegative maps

2.1
$$\{A_j \in S \mid \biguplus_{k=1}^m A_k = X\}_{j=1}^{m \in \mathbb{Z}_{>0}}$$
 is an **S-partition** of a measurable space (X, S)

2.1
$$\{A_j \in S \mid \biguplus_{k=1}^m A_k = X\}_{j=1}^{m \in \mathbb{Z}_{>0}}$$
 is an S -partition of a measurable space (X, S)
2.2 The *integral* $\int f d\mu := \sup_{\mathcal{D}} \{ \mathcal{L}_{f,\mathcal{D} = \{A_j\}_{j=1}^m} := \sum_{j=1}^m \mu_{A_j} \inf_{A_j} f \}_{S\text{-partition } \mathcal{D} \text{ of a measurable space}}$

urable
$$X \xrightarrow{f} \overline{\mathbb{R}}_{\geq 0}$$
 on the measure space $(X, S, \mu)^{[i \times]}$

2.1
$$\int \chi_E d\mu = \mu_E \forall measure space (X, S \ightarrow E, \mu)$$

Proof.
$$\int \chi_{\mathsf{E}} \, \mathrm{d}\mu \geq \mathcal{L}_{\chi_{\mathsf{E}},\exists \, \$-\text{partition} \, \{\mathsf{E},\mathsf{X}\setminus\mathsf{E}\} \, \text{of} \, \mathsf{X}} = \mu_{\mathsf{E}} \geq \mu_{\biguplus_{j=1}^{\mathsf{m}} \, \mathsf{A}_{j}} = \sum_{\substack{j=1 \ \mathsf{A}_{j}\subseteq\mathsf{E}}}^{\mathsf{m}} \mu_{\mathsf{A}_{j}}$$

$$= \sum_{j=1}^{m} \left(\mu_{A_{j}} \inf_{A_{j}} \chi_{E} = \begin{cases} \mu_{A_{j}} & \text{if } A_{j} \subseteq E \\ o & \text{if } A_{j} \backslash E \neq \varnothing \end{cases} \right) = \mathcal{L}_{\chi_{E}, \forall \$-\text{partition } \{A_{j}\}_{j=1}^{m} \text{ of } X} \qquad \qquad \Box$$

E.g.
$$\forall$$
 Lebesgue's measure $\mathring{\mu}$ on X , $\int \chi_{\mathbb{Q}} \, \mathrm{d}\mathring{\mu} = \mathring{\mu}_{\mathbb{Q}} = \mathrm{o}$, $\int \chi_{[0,1]\setminus\mathbb{Q}} \, \mathrm{d}\mathring{\mu} = \mathring{\mu}_{[0,1]\setminus\mathbb{Q}} = 1$.

E.g. $\int b \, d\mu = \sum_{k=1}^{\infty} b_{k'}$ with $\mathbb{Z}_{>0} \xrightarrow{b:k\mapsto b_k} \mathbb{R}_{\geq 0'}$ and μ the counting measure on

2.2
$$\int \left(\sum_{k=1}^{n} c_{k} \chi_{E_{k}}\right) d\mu \xrightarrow{\forall \left\{c_{k} \in \overline{\mathbb{R}}_{\geq 0}\right\}_{k=1}^{n}} \sum_{k=1}^{n} c_{k} \mu_{E_{k}} \forall \textit{measure space}\left(X, S, \mu\right) \blacksquare$$

Proof. Define $f := \sum_{k=0}^{n} c_k \chi_{E_k}$, with $\{E_o := X \setminus \bigcup_{k=1}^{n} E_k\} \cup \{E_k\}_{k=1}^{n}$ an S-partition of X, and set $c_0 \equiv 0$. Then

$$\begin{split} &\sum_{k=1}^{n} c_{k} \mu_{E_{k}} \equiv \sum_{k=o}^{n} c_{k} \mu_{E_{k}} = \mathcal{L}_{f,\{E_{k}\}_{k=o}^{n}} \leq \int \left(f \equiv \sum_{k=1}^{n} c_{k} \chi_{E_{k}}\right) d\mu \\ &= \mathcal{L}_{f,\exists S\text{-partition}} \{A_{j} = [B_{j} = \biguplus_{k=1}^{n} (B_{j,k} = A_{j} \cap E_{k})] \uplus [A_{j} \setminus B_{j}] \}_{j=1}^{m} \text{ of } X \\ &= \sum_{j=1}^{m} \left\{ \begin{bmatrix} \mu_{A_{j}} & \frac{\mu_{\varnothing = o}}{m} & \left\{\sum_{k=1}^{n} \mu_{B_{j,k}} + \mu_{A_{j}} \setminus B_{j} & \text{if } A_{j} \setminus B_{j} \neq \varnothing \right\} \\ \sum_{k=1}^{n} \mu_{B_{j,k}} & \text{if } A_{j} \setminus B_{j} = \varnothing \right] \\ &\times \left[\inf_{A_{j}} f & \frac{(A_{j} \setminus B_{j}) \cap \left(E_{\forall k \in \{1, \dots, n\}} = \biguplus_{j=1}^{m} B_{j,k}\right) = \varnothing}{m} & \left\{ \begin{matrix} o & \text{if } A_{j} \setminus B_{j} \neq \varnothing \\ min_{i \in \{1, \dots, n\}} c_{i} & \text{if } A_{j} \setminus B_{j} = \varnothing \right] \right\} \\ &= \sum_{j=1}^{m} \left[\left(\sum_{k=1}^{n} \mu_{B_{j,k}} \right) min_{i \in \{1, \dots, n\}} c_{i} \leq \sum_{k=1}^{n} \mu_{B_{j,k}} c_{k} \\ B_{j,k} \neq \varnothing \right] \\ &\leq \sum_{j=1}^{m} \sum_{k=1}^{n} \mu_{B_{j,k}} c_{k} = \sum_{k=1}^{n} c_{k} \left(\sum_{j=1}^{m} \mu_{B_{j,k}} = \mu_{\biguplus_{i=1}^{m} B_{j,k} = E_{k}} \right) & \Box \\ \end{split}$$

2.3
$$\int f d\mu \leq \int g d\mu \ \forall X \xrightarrow{f, g} \overline{\mathbb{R}}_{\geq o} \ \textit{measurable on a measure space} \ (X, S, \mu) : f_{\forall x \in X} \leq g_x$$

$$(\Rightarrow \inf_{A_{\forall j \in \{1, \dots, m\}}} f \leq \inf_{A_j} g \Rightarrow \mathcal{L}_{f, \mathcal{P}} \leq \mathcal{L}_{g, \mathcal{P}}, \ \forall \ S\textit{-partition} \ \mathcal{P} = \left\{A_j\right\}_{j=1}^m \textit{of} \ X)$$

2.1.2 Monotone convergence theorem about limits & integrals

2.4
$$\int f d\mu = \sup_{S = \left\{\sum_{j=1}^{m} \left(c_{j} \in \mathbb{R}_{\geq 0}\right) \mu_{A_{j} \in \mathcal{S}} \mid A_{j=1,\dots,m} \text{ are disjoint } \wedge f_{\forall x \in X} \geq \sum_{j=1}^{m} c_{j} \chi_{A_{j} : x}\right\}}$$

The **counting measure** μ on a measurable space (X, S) counts the number of elements in $E \in S$; *i.e.* $\mu_E := |E|$

 $\forall\, \textit{measurable}\, X \overset{f}{\longrightarrow} \, \overline{\mathbb{R}}_{\geq o}\, \textit{on a measure space}\, \big(X, \mathbb{S}, \mu\big)$

Proof. 1.
$$\underbrace{\int f d\mu \geq \underbrace{\int \left(\sum_{j=1}^m c_j \chi_{A_j}\right) d\mu}_{\text{theorem 2.3}} = \sum_{j=1}^m c_j \mu_{A_j}.$$

2. *C.f.* definition 2.1. (a) $\inf_{\forall A \in \mathcal{S}: \mu_A > 0} f < \infty \Rightarrow \forall \mathcal{S}\text{-partition } \mathcal{P} = \left\{A_j \in \mathcal{S} \setminus \{\emptyset\}\right\}_{j=1}^m$ of X, taking $c_j = \inf_{A_j} f$ shows that $\mathcal{L}_{f,\mathcal{P}} \in S \xrightarrow{\text{definition of } \int f d\mu} \sup_{S} \sup_{S} \sum_{j=1}^m f d\mu'$. (b) $\inf_{\exists A \in \mathcal{S}: \mu_A > 0} f = \infty \Rightarrow \forall f \in \mathbb{R}_{>0}$, taking $\left\{A_j\right\}_{j=1}^{m=1} = \left\{A\right\}$ and $c_1 = f$ shows that

(b)
$$\inf_{\exists A \in \mathcal{S}: \mu_A > 0} f = \infty \Rightarrow \forall t \in \mathbb{R}_{>0}$$
, taking $\{A_j\}_{j=1} = \{A\}$ and $c_1 = t$ shows that $\sup_S \ge t\mu_A = \infty \ge \int f d\mu'$

Theorem (monotone convergence) $\forall \left\{ X \xrightarrow{f_k} \overline{\mathbb{R}}_{\geq 0} \;\middle|\; f_k \leq f_{k+1} \land f_{k; \forall x \in X} \xrightarrow{k \to \infty} f_x \right\}_{k=1}^{\infty}$

of measurable maps on a measure space (X, S, μ) , $\int f_k d\mu \xrightarrow{k \to \infty} \int f d\mu$

 $\begin{array}{ll} \textit{Proof.} \ \text{1. Theorem} \ \ 1.13 \ \ \Rightarrow X \overset{f}{\to} \overline{\mathbb{R}}_{\geq 0} \ \ \text{is measurable} \ \ \frac{\int\limits_{\text{theorem 2.3}}^{\text{f}_{\forall k \in \mathbb{Z}_{\geq 0}}; \forall x \in X} \leq f_X}{\text{theorem 2.3}} \ \ \int f_{\forall k \in \mathbb{Z}_{\geq 0}} \, \mathrm{d}\mu \\ \leq \int f \, \mathrm{d}\mu \Rightarrow \lim_{k \to \infty} \int f_k \, \mathrm{d}\mu \leq \int f \, \mathrm{d}\mu \end{array}$

2. $\forall \{c_j \in \mathbb{R}_{\geq 0}\}_{j=1}^m \forall \{A_j \in \mathcal{S} \mid A_{j=1,...,m} \text{ are disjoint } \land f_{\forall x \in X} \geq \sum_{j=1}^m c_j \chi_{A_j;x} \}_{j=1}^m \forall \{c_j \in \mathbb{R}_{\geq 0}\}_{j=1}^m \forall \{c_j \in \mathcal{S} \mid A_{j=1,...,m} \text{ are disjoint } \land f_{\forall x \in X} \geq \sum_{j=1}^m c_j \chi_{A_j;x} \}_{j=1}^m \forall \{c_j \in \mathcal{S} \mid f_{k,x} > t \sum_{j=1}^m c_j \chi_{A_j;x} \land \bigcup_{j \in \mathbb{Z}_{>0}} E_j = X \} \subseteq E_{k+1} \in \mathcal{S} \xrightarrow{\text{theorem 1.14}} \mu_{A_j \cap E_k} \xrightarrow{k \to \infty} \mu_{A_j}. \text{ Then } f_{\forall k \in \mathbb{Z}_{>0}; \forall x \in X} \geq t \sum_{j=1}^m c_j \chi_{A_j \cap E_k;x}$

$$\xrightarrow{\text{theorem 2.4}} \int f_{\forall k \in \mathbb{Z}_{>0}} d\mu \geq t \sum_{j=1}^{m} c_{j} \mu_{A_{j} \cap E_{k}} \xrightarrow{k \to \infty} \lim_{k \to \infty} \int f_{k} d\mu \geq t \sum_{j=1}^{m} c_{j} \mu_{A_{j}}$$

$$\xrightarrow{t \to 1} \sum_{j=1}^m c_j \mu_{A_j} \xrightarrow{\text{taking supremum over S in theorem 2.4}} \int f d\mu$$

2.5 \forall measure space (X, S, μ) , $f = \sum_{j=1}^{m} (a_j \in \overline{\mathbb{R}}_{\geq 0}) \chi_{A_j \in S} = \sum_{k=1}^{n} (b_k \in \overline{\mathbb{R}}_{\geq 0}) \chi_{B_k \in S} = g$ $\Rightarrow \sum_{j=1}^{m} a_j \mu_{A_j} = \sum_{k=1}^{n} b_k \mu_{B_k}$

Proof. 1. Say $\bigcup_{j=1}^m A_j = X$. \forall nondisjoint pairs $A'_{k=1,2} \in \{A_j\}_{j=1}^m$, repeat the de-

 $\text{composition} \begin{cases} \bigcup_{j=1}^{2} A_{j}' = \underbrace{\left(A_{1}' \middle A_{2}'\right) \uplus \left(A_{1}' \cap A_{2}'\right) \uplus \left(A_{2}' \middle A_{1}'\right)}_{A_{1}'} & \text{for finite steps,} \\ \sum_{j=1}^{2} a_{j} \chi_{A_{j}'} = a_{1} \chi_{A_{1}' \middle A_{2}'} + \left(a_{1} + a_{2}\right) \chi_{A_{1}' \cap A_{2}'} + a_{2} \chi_{A_{2}' \middle A_{1}'} \\ \sum_{j=1}^{2} a_{j} \mu_{A_{j}'} = a_{1} \mu_{A_{1}' \middle A_{2}'} + \left(a_{1} + a_{2}\right) \mu_{A_{1}' \cap A_{2}'} + a_{2} \mu_{A_{2}' \middle A_{1}'} \end{cases}$

one can convert the initial sets A into disjoint ones with modified coefficients a but unchanged value of ' $\sum a\mu_A$ '.

- 2. Replace the sets A corresponding to each modified a from step 1 by $\bigcup A$, μ 's finite additivity \Rightarrow ' $\sum a\mu_A$'s value remains unchanged when making the coefficients a distinct.
- 3. Drop any terms for which $A=\emptyset$, getting f's standard^[xii] representation with ' $\sum a\mu_A$'s value unchanged. Finally, applying the same procedure to g shows that f=g iff $\sum a\mu_A=\sum b\mu_B$.

Otherwise add the term o $\cdot \chi_{X \setminus \bigcup_{j=1}^m A_j}$ to the simple map $X \stackrel{f}{\to} \overline{\mathbb{R}}_{\geq 0}$

The representation $\sum_{k=1}^{n} c_k \chi_{E_k}$ \forall simple map $X \xrightarrow{h} \overline{\mathbb{R}}_{\geq 0}$ on a measurable space (X, S) is **standard** if $c_{k=1,...,n} \in \overline{\mathbb{R}}_{\geq 0}$ are disjoint $\Lambda \left\{ \mathsf{E}_k = \mathsf{h}_{\{c_k\}}^{-1} \neq \varnothing \right\}_{k=1}^n$ is an S-partition of X

2.6
$$\int \left(\sum_{k=1}^{n} c_{k} \chi_{E_{k}}\right) d\mu \xrightarrow{\forall \left\{c_{k} \in \overline{\mathbb{R}}_{\geq 0}\right\}_{k=1}^{n}} \sum_{k=1}^{n} c_{k} \mu_{E_{k}} \forall \textit{measure space}\left(X, S, \mu\right)$$

Proof. Apply theorems 2.2 & 2.5 on the standard representation of $\sum_{k=1}^{n} c_k \chi_{E_k}$

2.7
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu \quad \forall \text{measurable } X \xrightarrow{f, g} \overline{\mathbb{R}}_{\geq 0} \text{ on a measure space } (X, S, \mu)$$

 $\begin{array}{l} \textit{Proof.} \ \, \text{Theorem 1.20} \Rightarrow \exists \, \text{increasing sequences} \left\{ X \xrightarrow{f_k} \overline{\mathbb{R}}_{\geq 0} \right\}_{k=1}^{\infty} \& \left\{ X \xrightarrow{g_k} \overline{\mathbb{R}}_{\geq 0} \right\}_{k=1}^{\infty} \\ \text{of simple maps measurable on } \left(X, \mathcal{S}, \mu \right) : f_{\forall x \in X} = f_{k \to \infty; x} \& g_{\forall x \in X} = g_{k \to \infty; x}. \ \, \text{Then} \\ \int \left(f + g \right) \mathrm{d} \mu \xrightarrow{\text{monotone convergence theorem}} \int \left(f_k + g_k \right) \mathrm{d} \mu \xrightarrow{\text{theorem 2.6}} \int f_k \, \mathrm{d} \mu + \int g_k \, \mathrm{d} \mu \\ \xrightarrow{\text{monotone convergence theorem}} \int f \, \mathrm{d} \mu + \int g \, \mathrm{d} \mu \end{array}$

2.1.3 Integration of real-valued maps

- **2.3** Define $X \xrightarrow{f^{\pm}} \overline{\mathbb{R}}_{\geq 0}$ by $f_{\forall x \in X}^{\pm} := \max\{f_x, o\} \ \forall X \xrightarrow{f} \overline{\mathbb{R}}$. f is measurable on a measure space (X, \mathcal{S}, μ) with at least one of $\int f^{\pm} \, \mathrm{d} \mu < \infty \Rightarrow \int f \, \mathrm{d} \mu := \int f^{+} \, \mathrm{d} \mu \int f^{-} \, \mathrm{d} \mu$ **Remark.** $\int (|f = f^{+} f^{-}| = f^{+} + f^{-}) \, \mathrm{d} \mu < \infty$ iff $\int |f^{\pm}| \, \mathrm{d} \mu < \infty$.
- $\int f d\mu$ is defined \Rightarrow measurable f with at least one of $\int f^{\pm} d\mu < \infty$. **E.g.** $\int \operatorname{sgn} d\mu$ is not defined \forall Lebesgue's measure μ on $\mathbb R$ because $\int \operatorname{sgn}^{\pm} d\mu = \infty$.
- **2.8** \forall measurable $X \xrightarrow{f} \overline{\mathbb{R}}$ on a measure space (X, S, μ) , $\int f d\mu$ is defined

$$\Rightarrow \int \mathsf{cf} \, \mathrm{d}\mu \xrightarrow{\forall \, \mathsf{c} \in \mathbb{R}} \mathsf{c} \int \mathsf{f} \, \mathrm{d}\mu \wedge \left| \int \mathsf{f} \, \mathrm{d}\mu \right| \leq \int |\mathsf{f}| \, \mathrm{d}\mu$$

 $\begin{array}{l} \textit{Proof.} \ \ \text{1. Without loss of generality, say } c \geq o. \ \ \text{Then} \ \int cf \, d\mu = \sum_{s=\pm} s \int (cf)^s \, d\mu \\ \frac{\mathcal{L}_{cg,\mathcal{P}} = c\mathcal{L}_{g,\mathcal{P}} \Rightarrow \int cg d\mu = c \int g d\mu}{\forall X \xrightarrow{g}_{\mathbb{R}_{\geq 0}} \forall \text{partition} \ \mathcal{P} \text{ of } X} \\ \sum_{s=\pm} s \left(\int cf^s \, d\mu = c \int f^s \, d\mu \right) = c \int f \, d\mu. \end{array}$

2.
$$\left| \int f d\mu \right| = \left| \sum_{s=\pm} s \underbrace{\int f^s d\mu} \right| \le \sum_{s=\pm} s \int f^s d\mu = \int |f| d\mu$$
 \bigcirc

- **2.9** \forall measurable $X \xrightarrow{f_{k=1,2}} \overline{\mathbb{R}}$ on a measure space (X, S, μ)
- $\int |f_{k=1,2}| d\mu < \infty \Rightarrow \int (\sum_{k=1}^{2} f_k) d\mu = \sum_{k=1}^{2} \int f_k d\mu$ (c.f. theorem 2.7)
- $f_{1;\forall x \in X} \le f_{2;x} \Rightarrow \int f_1 d\mu \le \int f_2 d\mu$ (c.f. theorem 2.3)

2.2 Limits of integrals & integrals of limits

2.2.1 Bounded convergence theorem

2.10
$$\left| \int_{E} f \, d\mu := \int \chi_{E} f \, d\mu \right| \leq \int \chi_{E} (|f| \leq \sup_{E} |f|) \, d\mu = \mu_{E} \sup_{E} |f| \quad \forall \textit{measurable} \\ X \xrightarrow{f} \overline{\mathbb{R}} \textit{ on a measure space} (X, S \ni E, \mu)$$

Theorem (bounded convergence) $\forall \left\{ X \xrightarrow{f_k} \mathbb{R} \mid f_{k;\forall_{X \in X}} \xrightarrow{k \to \infty} f_x \right\}_{k=1}^{\infty} \text{ of measurable maps on a measure space } (X, S, \mu) \text{ with } \mu_X < \infty, \int f_k \, \mathrm{d}\mu \xrightarrow{k \to \infty} \int f \, \mathrm{d}\mu \text{ if } \exists c \in \mathbb{R}_{>|f_{\forall k \in \mathbb{Z}_{>0};\forall_{X \in X}}|}$

Proof. Theorem 1.12 \Rightarrow measurable $X \xrightarrow{f} \mathbb{R} \xrightarrow{\text{Egorov's theorem}} \forall \epsilon > 0 \quad \exists E \in \mathbb{S} : \mu_{X \setminus E} < \epsilon'_{4c} \quad \land \{f_k\}_{k=1}^{\infty} \text{ converges to funiformly}^{[xiii]} \text{ on } E$ $\Rightarrow \lim_{k \to \infty} \left| \int f_k \, d\mu - \int f \, d\mu = \int_{X \setminus E} f_k \, d\mu - \int_{X \setminus E} f \, d\mu + \int_E (f_k - f) \, d\mu \right|$ $\leq \lim_{k \to \infty} \frac{\leq \mu_{X \setminus E} c < \epsilon'_{4}}{\int_{X \setminus E} |f_k|} \frac{\leq \mu_{X \setminus E} c < \epsilon'_{4}}{d\mu} + \lim_{k \to \infty} \int_E |f_k - f| \, d\mu < \epsilon \xrightarrow{\text{arbitrariness of } \epsilon} 0$ $\leq (\mu_E < \infty) (\sup_{E} |f_k \to \infty - f| < \epsilon'_{2\mu_E})$

Remark. Egorov's theorem is crucial for interchanging limits and integrals in proofs.

2.2.2 o-measure sets in integration theorems

2.4 \forall measure space (X, S, μ) , $E \in S$ contains **almost every** $x \in X$ (denote $\forall x \in X$) if $\mu_{X \setminus E} = o$ **Remark** 1. Integration theorems can almost always be relaxed to hold for almost everywhere instead of everywhere. *E.g.* relax in the bounded convergence theorem ' $f_{k;\forall x \in X} \xrightarrow{k \to \infty} f_x$ ' to ' $f_{k;\forall x \in X} \xrightarrow{k \to \infty} f_x$ '; i.e. $\exists E \in S : \mu_{X \setminus E} = o \land f_{k;\forall x \in E} \xrightarrow{k \to \infty} f_x$, then $\int f_k d\mu = \int_E f_k d\mu \equiv \int \chi_E \left(f_k \xrightarrow{k \to \infty} f \right) d\mu \equiv \int_E f d\mu$.

2.2.3 Dominated convergence theorem

2.11 \forall measurable $X \xrightarrow{g} \overline{\mathbb{R}}_{\geq 0}$ on a measure space (X, S, μ) with $\int g d\mu < \infty \ \forall \epsilon > 0$

1.
$$\exists \delta > o : \int_{\forall B \in S: \mu_B < \delta} g \, d\mu < \epsilon$$

2.
$$\exists E \in S : \int_{X \setminus E: \mu_E < \infty} g \, d\mu < \epsilon$$

Proof. 1. Theorem 2.4 \Rightarrow ' \exists simple δ -measurable $X \xrightarrow{h \in [0,g]} \mathbb{R}_{\geq 0} : \underbrace{\int g \, d\mu - \int h \, d\mu}_{< \infty} \in [0,\epsilon/2]$ ' $\Rightarrow \exists \, \delta > 0 : \delta \underbrace{\max_{\{h_x \mid x \in X\}} < \epsilon/2}_{H} \land \int_{B:\mu_B < \delta} g \, d\mu = \underbrace{\int_{B} (g-h) \, d\mu + \int_{B} h \, d\mu < \epsilon}_{\leq [(g-h)d\mu < \epsilon/2]} \underbrace{+ \int_{B} h \, d\mu < \epsilon}_{\leq H\mu_B < H\delta < \epsilon/2}$

2. '
$$\exists$$
 S-measurable partition $\mathcal{P} = \left\{A_j\right\}_{j=1}^m$ of $X : \underbrace{\int g \, \mathrm{d}\mu}_{<\infty} - \mathcal{L}_{g,\mathcal{P}} \in [o,\varepsilon) \land \mu_{\mathsf{E} = \bigcup_{j=1,\ldots,m} A_j \inf_{\mathsf{inf}_{A_j} g > o}} A_j = \mathcal{L}_{g,\mathcal{P}} = \mathcal{L}_{\chi_{\mathsf{E}}g,\mathcal{P}}$ ' $\Rightarrow \int_{\mathsf{X} \setminus \mathsf{E}} g \, \mathrm{d}\mu - \int \chi_{\mathsf{E}}g \, \mathrm{d}\mu - \int \chi_{\mathsf{E}}g \, \mathrm{d}\mu < \varepsilon + \mathcal{L}_{g,\mathcal{P}} - \mathcal{L}_{\chi_{\mathsf{E}}g,\mathcal{P}} = \varepsilon$

Theorem (dominated convergence) \forall measurable $X \xrightarrow{f} \overline{\mathbb{R}}$ on a measure space

$$\begin{array}{ll} (X, \mathbb{S}, \mu) & \forall \left\{ \text{measurable } X \xrightarrow{f_k} \overline{\mathbb{R}} \;\middle|\; f_{k; \underbrace{\forall} x \in X} \xrightarrow{k \to \infty} f_x \right\}_{k=1}^{\infty}, \quad \int f_k \, \mathrm{d} \mu \xrightarrow{k \to \infty} \int f \, \mathrm{d} \mu & \text{if } \\ \exists \, \text{measurable } X \xrightarrow{g} \overline{\mathbb{R}}_{\geq 0} : \int g \, \mathrm{d} \mu < \infty \, \wedge \, \left| f_{\forall \, k \in \mathbb{Z}_{> 0}; \underbrace{\forall} x \in X} \right| \leq g_x \end{array}$$

[[]xiii] I.e. $|f_k - f|$ arbitrarily small for large enough k

$$\begin{split} \textit{Proof.} \; \left| \int f_k \, \mathrm{d}\mu - \int f \, \mathrm{d}\mu \right| & \xrightarrow{\forall E \in \mathbb{S}} \left| \int_{X \setminus E} f_k \, \mathrm{d}\mu - \int_{X \setminus E} f \, \mathrm{d}\mu + \int_E f_k \, \mathrm{d}\mu - \int_E f \, \mathrm{d}\mu \right| \\ & \leq \left(\left| \int_{X \setminus E} f_k \, \mathrm{d}\mu \right| + \left| \int_{X \setminus E} f \, \mathrm{d}\mu \right| \leq \left| 2 \int_{X \setminus E} g \, \mathrm{d}\mu \right| \right) + \left| \int_E \left(f_k - f \right) \mathrm{d}\mu \right| \end{split}$$

1. $\mu_X < \infty \xrightarrow{\text{Egorov's theorem}} \exists E \in \mathcal{S} : \mu_{X \setminus E \in \mathcal{S}} < \infty \xrightarrow{\text{theorem 2.11.1}} \int_{X \setminus E} g \, d\mu < \frac{\epsilon}{4} \land \{f_k\}_{k=1}^{\infty} \text{ converges uniformly on E to f (} \Rightarrow \left| \int_E \left(f_k - f \right) d\mu \right| < \frac{\epsilon}{4} \text{ for large enough k). Thus } \right| \int_{\mathbb{R}} f_k \, d\mu - \int_{\mathbb{R}} f \, d\mu = \frac{1}{4} \int_{\mathbb{R}} f_k \, d\mu =$

2. For $\mu_X = \infty$, theorem 2.11.2 $\Rightarrow \exists E \in S : \mu_E < \infty \land \int_{X \setminus E} g \, d\mu < \frac{\epsilon}{4}$. Besides, $\left| \int_E f_k \, d\mu - \int_E f \, d\mu \right| < \frac{\epsilon}{2}$ for large enough k by case 1 as applied to $\left\{ f_k \right|_E \right\}_{k=1}^{\infty}$. Thus $\left| \int_K f_k \, d\mu - \int_K f \, d\mu \right| \xrightarrow{k \to \infty} 0$

2.2.4 RIEMANN'S & LEBESGUE'S integrals

2.12 A bounded $[a,b] \xrightarrow{f} \mathbb{R}$ is Riemann-integrable iff $\mathring{\mu}_{\{x \in [a,b] \mid f \text{ is discontinuous at } x\}} = o$ (say $-\infty < a < b < \infty$); besides, f is measurable on the measure space $(\mathbb{R}, \mathcal{L}, \mathring{\mu})$, with Riemann's integral $\int_a^b f = \int_{[a,b]} f \, d\mathring{\mu}^{[xiv]}$

 $\begin{array}{l} \textit{Proof.} \ \ \forall \, \text{partition} \ \mathcal{P}_{\forall \, n \in \mathbb{Z}_{>o}} \ \ \text{dividing} \ [a,b] \ \text{into} \ 2^n \ \text{subintervals} \ I_{j=1,\dots,2^n} \ \text{of equal size} \\ \text{$(b-a)$/}_{2^n$, Riemann's lower sum $L_{f,\mathcal{P}_n,[a,b]} = \int_{[a,b]} \left(g_n = \sum_{j=1}^{2^n} \chi_{I_j} \inf_{j} f\right) d\mathring{\mu} \ \& \ \text{upper sum} \\ U_{f,\mathcal{P}_n,[a,b]} = \int_{[a,b]} \left(h_n = \sum_{j=1}^{2^n} \chi_{I_j} \sup_{j} \sup_{j} f\right) d\mathring{\mu}_{j}^{[xv]} \ \text{Then} \ g_1 \leq \dots \leq g_{n \to \infty} \leq f \leq h_{n \to \infty} \leq g_{n \to \infty$

2.2.5 Appoximation by nice maps

2.5 \forall measurable $X \stackrel{f}{\rightarrow} \overline{\mathbb{R}}$ on a measure space (X, \mathbb{S}, μ) , is \mathcal{L}^1 -norm $\|f\|_1 := \int |f| \, d\mu$;

Lebesgue's space
$$\mathcal{L}_{\mu}^{1} := \left\{ \mathbb{S}\text{-measurable } X \xrightarrow{f} \mathbb{R} \mid \|f\|_{1} < \infty \right\}$$

E.g. \forall measure space (X, S, μ) , $f = \frac{a_{k=1,...,n} \in \mathbb{R}_{\neq 0} \text{ distinct}}{E_{k=1,...,n} \in X \text{ disjoint}} \sum_{k=1}^{n} a_k \chi_{E_k} \in \mathcal{L}_{\mu}^{1}$ iff

 $\mu_{E_{\forall k \in \{1,\dots,n\} \in \mathbb{S}}} < \infty$, with $\|f\|_1 = \sum_{k=1}^n \left| a_k \right| \mu_{E_k}$.

E.g. \mathcal{L}^1_{μ} is ℓ^1 if μ is the counting measure on the measurable space $(\mathbb{Z}_{>0}, \mathbf{2}^{\mathbb{Z}_{>0}})$. Say $\mathbb{Z}_{>0} \xrightarrow{a:k\mapsto a_k} \mathbb{R}$, then $\|a\in\ell^1\|_1 = \sum_{k=1}^\infty \left|a_k\right| < \infty$.

Properties (\mathcal{L}^1 -norm's) \forall measure space $(X, S, \mu) \forall f \& g \in \mathcal{L}^1_{\mu}$

 $[\]overline{\text{[xiv]}} \text{Say} - \infty \leq \text{a} < \text{b} < \text{c} \leq \infty, \\ \text{(a,b)} \xrightarrow{\text{f}} \mathbb{R} \text{ is measurable on } (\mathbb{R}, \mathcal{L}, \mathring{\mu}), \\ \text{then} - \int_{\text{b}}^{\text{a}} \text{f} = \int_{\text{a}}^{\text{b}} \text{f}_{\text{x}} \, d\text{x} \\ \equiv \int_{(\text{a,b})}^{\text{b}} \text{f} \, d\mathring{\mu} = \int_{\text{a}}^{\text{c}} \text{f} + \int_{\text{c}}^{\text{b}} \text{f}_{\text{x}} \, d\text{x} \\ = \int_{\text{a}}^{\text{b}} \text{f}_{\text{x}} \, d\text{x}$

For aesthetically pleasing form of mathematics, at each of the endpoints (other than a & b) that is in two of the subintervals, change g_n 's value to be f's infimum over the two subintervals, and h_n 's value to be f's supremum over the two subintervals.

- $\|f\|_1 \ge 0$
- $\|f\|_1 = o \text{ iff } f_{\forall x \in X} = o$
- $\|cf\|_1 \stackrel{\forall c \in \mathbb{R}}{===} |c| \cdot \|f\|_1$
- $\|f + g\|_1 \le \|f\|_1 + \|g\|_1$
- $\forall \epsilon > o \exists simple h \in \mathcal{L}^1_{\mu} : \|f h\|_1 < \epsilon$
- **2.6** Denotes $\mathcal{L}^1_{\mathring{\mu}}$ by $\mathcal{L}^1_{\mathbb{R}}$ for the measure space $(\mathbb{R}, \mathfrak{F} \in \{\mathfrak{B}, \mathfrak{L}\}, \mathring{\mu})$, with $\|f\|_1 = \int_{\mathbb{R}} |f| \, d\mathring{\mu}$
- **2.7** $\mathbb{R} \xrightarrow{\vartheta = \sum_{k=1}^{n} a_k \chi_{I_k}} \mathbb{R}$ with intervals $I_{k=1,...,n} \subseteq \mathbb{R}$ and $a_{k=1,...,n} \in \mathbb{R}_{\neq 0}$ is a **step map** \bullet $Remark. \bullet \|\vartheta\|_1 = \sum_{k=1}^{n} |a_k|\mathring{\mu}_{I_k}$ if $I_{k=1,...,n}$ are disjoint.
- $\bullet \ \ \vartheta \in \mathcal{L}_{\mathbb{R}}^{1} \ \text{iff} \ \mathring{\mu}_{I_{\forall k \in \{1, \dots, n\}}} < \infty.$
- The intervals in ϑ 's definition can be open or closed, or half-open; including/excluding interval endpoints does not matter when using ϑ in integrals.
- 2.13 $\forall f \in \mathcal{L}_{\mathbb{R}}^{1} \, \forall \epsilon > 0$
- $\exists step \ \vartheta \in \mathcal{L}^1_{\mathbb{R}} : \|f \vartheta\|_1 < \epsilon$
- $\exists continuous \mathbb{R} \xrightarrow{g} \mathbb{R} : \|f g\|_{1} < \epsilon \wedge \mathring{\mu}_{\{x \in \mathbb{R} \mid g_{x} \neq 0\}} < \infty$

Differentiation 3

HARDY-LITTLEWOOD'S maximal map

Inequality (Markov's) $\mu_{\{x \in X \mid |h(x)| > c\}} \leq \|h \in \mathcal{L}_{\mu}^1\|_1 /_{(c>o)} \forall measure spaces (X, S, \mu)$ **Lemma** (Vitali's covering) Every sequence $\{I_k \subseteq \mathbb{R}\}_{k=1}^n$ of bounded nonempty open intervals has a disjoint subsequence $\left\{I_{k_j}\right\}_{j=1}^m:\bigcup_{k=1}^nI_k\subseteq\bigcup_{j=1}^m3I_{k_{j'}}$ with 31 the open interval with the same centre as I and $\mathring{\mu}_{3l} = 3\mathring{\mu}_{l}$

Inequality (Hardy-Littlewood's maximal) $\mathring{\mu}_{\{b \in \mathbb{R} \mid h_h^* > c\}} \leq 3^{\|h \in \mathcal{L}_{\mathbb{R}}^1\|_1} /_{(c > o)'}$ with

$$\mathbb{R} \xrightarrow{h^*: b \mapsto \sup_{t>o} \left(\int_{b-t}^{b+t} |h| \right) /_{2t}} \overline{\mathbb{R}}_{\geq o} \qquad \textit{HARDY-LITTLEWOOD's maximal map}^{[xvi]} \qquad \forall \mathcal{L}$$

measurable $\mathbb{R} \xrightarrow{h} \mathbb{R}$

Derivatives of integrals

3.1 (I \xrightarrow{g} \mathbb{R})'s *derivative* $g_b' := \lim_{t \to o} (g_{b+t} - g_b) /_t$ (if the limit exists; g is then dubbed $\textit{differentiable}) \text{ at } b \in I \ \forall \text{ open interval } I \subseteq \mathbb{R}$ Fundamental theorem of calculus $f \in \mathcal{Z}^1_\mathbb{R}$ is continuous at $b \in \mathbb{R} \Rightarrow g_b' = f_b$ with $\mathbb{R} \xrightarrow{g: x \mapsto \int_{-\infty}^{x} f} \mathbb{R}$

Theorem (Lebesgue's differentiation) $f \in \mathcal{L}^1_{\mathbb{R}} \Rightarrow \Breve{y} \ b \in \mathbb{R}$

$$\bullet \ \, lim_{t\downarrow o} \left(\int_{b-t}^{b+t} |f-f_b| \right) \!\! /_{\!\!\! 2t} = o$$

•
$$g'_b = f_b \text{ with } \mathbb{R} \xrightarrow{g:x \mapsto \int_{-\infty}^x f} \mathbb{R}$$

3.1
$$\nexists \mathcal{L}$$
-measurable $\mathsf{E} \subseteq [\mathsf{o},\mathsf{1}] : \mathring{\mu}_{\mathsf{E} \cap [\mathsf{o},\mathsf{b}]} = \mathsf{b}/\mathsf{2} \ \forall \ \mathsf{b} \in [\mathsf{o},\mathsf{1}]$

Proof.
$$\exists$$
 such $E \Rightarrow g_{b \in \mathbb{R}} = \int_{-\infty}^{b} \chi_E \xrightarrow{\forall b \in [0,1]} b/2$

Proof. ∃ such E ⇒
$$g_{b \in \mathbb{R}} = \int_{-\infty}^{b} \chi_{E} \xrightarrow{\forall b \in [0,1]} b/2$$
⇒ $1/2 \xrightarrow{\forall b \in (0,1)} g'_{b} \xrightarrow{\chi_{b \in \mathbb{R}}} \chi_{E;b} \in \{0,1\}$

3.2
$$f_{\forall b \in \mathbb{R}} = \lim_{t \downarrow 0} \left(\int_{b-t}^{b+t} f \right) /_{2t} \forall f \in \mathcal{L}^1_{\mathbb{R}}$$

3.2
$$\varrho_{\mathsf{E}\subseteq\mathsf{R};b\in\mathsf{R}} := \lim_{\mathsf{t}\downarrow\mathsf{o}} (\mathring{\mu}_{\mathsf{E}\cap(\mathsf{b}-\mathsf{t},\mathsf{b}+\mathsf{t})})/_{\mathsf{2}\mathsf{t}} \text{ is E's } \textit{density} \text{ at b}$$

E.g.
$$\rho_{[0,1];b} =
\begin{cases}
1 & \text{if } b \in (0,1) \\
1/2 & \text{if } b \in \{0,1\}. \\
0 & \text{otherwise}
\end{cases}$$

Theorem (Lebesgue's density)
$$\rho_{\forall E \in \mathcal{L}; b} = \begin{cases} 1 & \forall b \in E \\ o & \forall b \in \mathbb{R} \setminus E \end{cases}$$

3.3
$$\exists E \in \mathfrak{B} : o < \mathring{\mu}_{E \cap I} < \mathring{\mu}_{I} \forall nonempty bounded open interval I$$

$$\frac{1}{[x \vee i]} E.g. \left(\chi_{[-1,1]/2} \right)_{b}^{*} = \begin{cases} 1/(1+2|b|) & \text{if } 2|b| \ge 1 \\ 1 & \text{if } 2|b| < 1 \end{cases}$$

4 Product Measures

4.1 Product of measure spaces

4.1.1 Product σ -algebras

- **4.1** $A \times B$ is a *rectangle* in $X \times Y \ \forall (A, B) \in 2^{X \times Y}$
- **4.2** The *product* $S \otimes T$ is the smallest σ -algebra on $X \times Y$ containing all rectangles $A \times B$ (dubbed *measurable*) with $(A, B) \in S \times T$ \forall measurable spaces (X, S) & (Y, T)
- **4.3** $[E]_{a \in X} := \{y \in Y \mid (a, y) \in E\}$ and $[E]^{b \in Y} := \{x \in X \mid (x, b) \in E\}$ are the cross sections of $E \subseteq X \times Y$

4.1 $([E]^{b \in Y}, [E]_{a \in X}) \in S \times T \forall E \in S \otimes T \forall measurable spaces <math>(X, S) \& (Y, T)$

Proof. $A \times B \in \mathcal{E} = \{E \subseteq X \times Y \mid ([E]^{b \in Y}, [E]_{a \in X}) \in \mathcal{S} \times \mathcal{T} \} \ \forall (A, B) \in \mathcal{S} \times \mathcal{T} \ \text{by example 4.1, with } \mathcal{E} \text{ closed under complementation and countable unions as } [(X \times Y) \setminus E]_a = Y \setminus [E]_a, [\bigcup_{k \in \mathbb{Z}_{>0}} (E_k \subseteq X \times Y)]_a = \bigcup_{k \in \mathbb{Z}_{>0}} [E_k]_a \ \forall a \in X \text{ etc. Hence } \mathcal{E} \text{ is a } \sigma\text{-algebra on } X \times Y \text{ containing all } A \times B \in \mathcal{S} \otimes \mathcal{T}; \textit{i.e. } \mathcal{S} \otimes \mathcal{T} \subseteq \mathcal{E}$

$$\underbrace{\text{4.4 Y}} \xrightarrow{[f]_{\forall a \in X}: y \mapsto f_{a,y}} \mathbb{R} \ \& \ X \xrightarrow{[f]^{\forall b \in Y}_{X} \mapsto f_{x,b}} \mathbb{R} \text{ are the } \textit{cross sections} \text{ of } X \times Y \xrightarrow{f} \mathbb{R}$$

4.2 $[f]_{\forall a \in X}$ is \mathbb{T} -measurable on Y and $[f]^{\forall b \in Y}$ is \mathbb{S} -measurable on $X \forall \mathbb{S} \otimes \mathbb{T}$ -measurable $X \times Y \xrightarrow{f} \mathbb{R} \forall$ measurable spaces $(X, \mathbb{S}) \& (Y, \mathbb{T})$

Proof. \forall B ∈ \mathfrak{B} , $S \otimes \mathfrak{T}$ -measurable $f \Rightarrow f_B^{-1} \in S \otimes \mathfrak{T} \xrightarrow{\text{theorem 4.1}} [f_B^{-1}]_a \in \mathfrak{T}$; besides, $y \in ([f]_a)_B^{-1} \iff f_{a,y} = ([f]_a)_y \in B \iff (a,y) \in f_B^{-1} \iff y \in [f_B^{-1}]_a$. Thus $([f]_a)_{\forall B \in \mathfrak{B}}^{-1} = [f_B^{-1}]_a \in \mathfrak{T}$; *i.e.* $[f]_a$ is \mathfrak{T} -measurable. Similarly, $[f]_b$ is S-measurable.

4.1.2 Monotone class theorem

4.5 $\mathcal{A} \subseteq 2^{X}$ is an *algebra* on X if

- $\emptyset \in \mathcal{A}$
- $E \in A \Rightarrow X \setminus E \in A$
- $E_{k=1,2} \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{2} E_{k} \in \mathcal{A}$ $A \Rightarrow \bigcup_{k=1}^{2} E_{k} \in \mathcal{A}$ $A \Rightarrow \bigcup_{k=1}^{2} E_{k} \in \mathcal{A}$

4.3 \forall measurable spaces (X,S) and (Y,T), the set A of finite unions of rectangles in $S \otimes T$ is an algebra on $X \times Y$, each such union equals a finite union of disjoint measurable rectangles in $S \otimes T$

Proof. 1. (a) Obviously $\mathcal A$ is closed under finite unions.

- (b) $\forall A_{1,\dots,n} \& C_{1,\dots,m} \in S \ \forall B_{1,\dots,n} \& D_{1,\dots,m} \in \mathfrak{T}, \ \left(\bigcup_{j=1}^{n} A_{j} \times B_{j}\right) \cap \left(\bigcup_{k=1}^{m} C_{k} \times D_{k}\right) = \bigcup_{j=1}^{n} \bigcup_{k=1}^{m} \left[\left(A_{j} \times B_{j}\right) \cap \left(C_{k} \times D_{k}\right) = \left(A_{j} \cap C_{k}\right) \times \left(B_{j} \cap D_{k}\right)\right]; \ \text{intersection of two rectangles is a rectangle, implying that } \mathcal{A} \ \text{is closed under finite intersections.}$
- (c) $(X \times Y) \setminus (A \times B) = [(X \setminus A) \times Y] \cup [X \times ((Y \setminus B))] \quad \forall (A, B) \in S \times T$. Hence the complement of each $S \otimes T$ -measurable rectangle is in A. Thus the complement of a finite union of $S \otimes T$ -measurable rectangles is in A (use DE MORGAN's laws

and step (b) that A is closed under finite intersections). I.e. A is closed under complementation.

2. $[A \times B] \cup [C \times D] = [A \times B] \uplus [C \times (D \setminus B)] \uplus [(C \setminus A) \times (B \cap D)]$ measurable rectangles $A \times B \& C \times D$. Hence \forall finite union of $S \otimes T$ -measurable rectangles, if it is not a disjoint union, choose any nondisjoint pair of measurable rectangles in the union and replace them with the union of three disjoint measurable rectangles as above. Iterate this process until obtaining a disjoint union of measurable rectangles.

4.6 $\mathcal{M} \subseteq 2^X$ is a monotone class on X if

•
$$\left\{ \mathsf{E}_{\mathsf{k}} \in \mathcal{M} \;\middle|\; \mathsf{E}_{\forall j \in \mathbb{Z}_{>0}} \subseteq \mathsf{E}_{\mathsf{j}+1} \right\}_{\mathsf{k} \in \mathbb{Z}_{>0}} \Rightarrow \bigcup_{\mathsf{k} \in \mathbb{Z}_{>0}} \mathsf{E}_{\mathsf{k}} \in \mathcal{M}$$

$$\bullet \ \left\{ \mathsf{E}_{\mathsf{k}} \in \mathcal{M} \ \middle| \ \mathsf{E}_{\forall j \in \mathbb{Z}_{>0}} \supseteq \mathsf{E}_{\mathsf{j}+1} \right\}_{\mathsf{k} \in \mathbb{Z}_{>0}} \Rightarrow \bigcap_{\mathsf{k} \in \mathbb{Z}_{>0}} \mathsf{E}_{\mathsf{k}} \in \mathcal{M}$$

Theorem (monotone class) The smallest σ -algebra S containing an algebra A on X is the smallest monotone class $\mathfrak M$ containing $\mathcal A$

Proof. 1. Every σ -algebra is a monotone class $\Rightarrow M \subseteq S$.

- 2. (a) $A \in A \Rightarrow A \subseteq \text{monotone class } \mathcal{E} = \{E \in \mathcal{M} \mid A \cup E \in \mathcal{M}\} \text{ (as } A \subseteq \mathcal{M} \text{ is } \mathcal{A} \subseteq \mathcal{M} \text{ or } \mathcal{A} \subseteq$ closed under finite union) $\Rightarrow A \cup E \in \mathcal{M} \subseteq \mathcal{E} \ \forall E \in \mathcal{M} \Rightarrow$
- (b) $A \subseteq \text{monotone class } \mathcal{D} = \{D \in \mathcal{M} \mid D \cup E \in \mathcal{M} \forall E \in \mathcal{M}\} \Rightarrow \mathcal{M} \subseteq \mathcal{D} \text{ is closed } \mathcal{M} \subseteq \mathcal{M} \in \mathcal{M} \}$ under finite union \Rightarrow
- (c) i. $F_k = \bigcup_{j=1}^k (E_j \in \mathcal{M}) \in \mathcal{M} \Rightarrow F_{k \to \infty} = \bigcup_{k=1}^\infty F_k \subseteq \mathcal{M}$ (as \mathcal{M} is a monotone class) $\Rightarrow \mathcal{M}$ is closed under countable union.

ii. A is closed under complementation $\Rightarrow A \subseteq \text{monotone class } \mathcal{M}'$ $= \{E \in \mathcal{M} \mid X \setminus E \in \mathcal{M}\} \Rightarrow \mathcal{M} \subseteq \mathcal{M}' \text{ is closed under complementation.}$

Hence \mathcal{M} is an σ -algebra containing \mathcal{A} , and thus $\mathcal{M} \supseteq \mathcal{S}$

4.1.3 Products of measures

4.7 A measure μ on a measurable space (X, S) is dubbed

Finite if $\mu_X < \infty$.

σ-finite if
$$X = \bigcup_{k \in \mathbb{Z}_{>0}} (X_k \in S)$$
 with $\mu_{X_{\forall k \in \mathbb{Z}_{>0}}} < \infty$ **E.q.** • Lebesgue's measure on [0, 1] is finite.

- Lebesgue's measure on \mathbb{R} is not finite but σ -finite.
- Counting measure on $\mathbb R$ is not σ -finite (because the countable union of finite sets is countable).

4.4 $\forall \sigma$ -finite measure spaces $(X, S, \mu) \& (Y, T, \nu)$

- 1. $x \mapsto \nu_{[E]_{x \in X}}$ is S-measurable on X and $y \mapsto \mu_{[E]^{y \in Y}}$ is T-measurable on $Y \ \forall \ E \in \mathbb{S} \otimes \mathbb{T}$.
- 2. the **product** $S \otimes T \xrightarrow{\mu \times \nu : E \mapsto \int_X \int_Y \chi_{E;x,y} d\nu_y d\mu_x} (\mu \times \nu)_{S \otimes T}$ is a measure on $(X \times Y, S \otimes T)$

Proof. 1. Without lose of generality, one just need to prove that $x \mapsto \nu_{[E]_x}$ (welldefined, as $[E \in S \otimes T]_{\forall x \in X} \in T \Leftarrow$ theorem 4.1) is S-measurable on X.

(a) If ν is finite, one need to prove that

$$S \otimes T = M = \{ E \in S \otimes T : x \mapsto \nu_{[E]_x} \text{ is } S\text{-measurable on } X \}.$$

18

By example 4.1, $(A, B) \in S \times T \Rightarrow \nu_{[A \times B]_x} = \nu_B \chi_{A;x} \ \forall x \in X; \textit{i.e. } x \mapsto \nu_{[A \times B]_x} \text{ equals the S-measurable map } \nu_B \chi_A \text{ on X. Hence \mathcal{M} contains all measurable rectangles$ in $S \otimes T$.

By theorem 4.3, $E \in algebra \mathcal{A}$ of all finite unions of measurable rectangles in $S \otimes \mathcal{T} \Rightarrow \exists$ measurable rectangles $E_{k=1,...,n}: \nu_{\left[E=\biguplus_{k=1}^{n} E_{k}\right]_{x}=\biguplus_{k=1}^{n} \left[E_{k}\right]_{x}} = \sum_{k=1}^{n} \nu_{\left[E_{k}\right]_{x}}.$ I.e. $x \mapsto \nu_{[E]_x}$ is a finite sum of S-measurable maps and is thus S-measurable. Hence $E \in \mathcal{M}$, and $A \subseteq \mathcal{M}$.

The next is to show that $\mathcal M$ is a monotone class on $X \times Y$. \forall increasing sequence $\{E_k \in \mathcal{M}\}_{k=1}^{\infty}$, $\nu_{\left[\bigcup_{k=1}^{\infty} E_k\right]_x = \bigcup_{k=1}^{\infty} \left[E_k\right]_x} \stackrel{\infty \leftarrow k}{\longleftarrow} \nu_{\left[E_k\right]_x}$. Hence $x \mapsto \nu_{\left[\bigcup_{k=1}^{\infty} E_k\right]_x}$ is \mathcal{S} measurable, $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$, and \mathcal{M} is closed under countable increasing unions. \forall decreasing sequence $\{E_k \in \mathcal{M}\}_{k=1}^{\infty}$, $\nu_{\left[\bigcap_{k=1}^{\infty} E_k\right]_x = \bigcap_{k=1}^{\infty} \left[E_k\right]_x} \stackrel{\infty \leftarrow k}{\longleftarrow} \nu_{\left[E_k\right]_x}$ for finite ν . Hence $x \mapsto \nu_{\left[\bigcap_{k=1}^{\infty} E_k\right]_{\nu}}$ is \mathcal{S} -measurable, $\bigcap_{k=1}^{\infty} E_k \in \mathcal{M}$, and \mathcal{M} is closed under countable decreasing intersections.

Finally, monotone class theorem \Rightarrow the monotone class $\mathfrak M$ containing $\mathcal A$ contains the smallest σ -algebra containing \mathcal{A} ; *i.e.* $\mathcal{M} \supseteq \mathcal{S} \otimes \mathcal{T}$.

(b) If ν is a σ -finite, $\exists \{Y_k \in \mathfrak{T}\}_{k=1}^{\infty} : \bigcup_{k=1}^{\infty} Y_k = Y \land \nu_{Y_{\forall k \in \mathbb{Z}_{>0}}} < \infty$. Replacing each Y_k by $Y_1 \cup \cdots \cup Y_k$, one can assume that $Y_1 \subseteq Y_2 \subseteq \cdots \forall E \in S \otimes \mathfrak{T}$, $\nu_{[E]_x} \xleftarrow{\infty \leftarrow k} \nu_{[E \cap (X \times Y_k)]_x}, \text{ with } x \ \mapsto \ \nu_{[E \cap (X \times Y_k)]_x} \text{ \mathbb{S}-measurable on X (by step (a), $\mathbb{Z}_x \cap \mathbb{Z}_x \cap \mathbb{$ with ν considered finite when restricted to the σ -algebra on Y_k consisting of \mathfrak{I} -measurable sets $\mathsf{E} \subseteq \mathsf{Y}_k$). Hence $\mathsf{x} \mapsto \nu_{[\mathsf{E}]_\mathsf{x}}$ is \mathcal{S} -measurable on X .

2. Clearly $(\mu \times \nu)_{\varnothing} = 0$, and $\mu \times \nu$ is the countably additive as $(\mu \times \nu)_{\biguplus_{k=1}^{\infty}(\mathsf{E}_{\mathsf{k}} \in \mathbb{S} \otimes \mathcal{T})}$ $= \int_X \left(\nu_{\left[\biguplus_{k=1}^\infty \mathsf{E}_k\right]_X = \biguplus_{k=1}^\infty \left[\mathsf{E}_k\right]_X} = \sum_{k=1}^\infty \nu_{\left[\mathsf{E}_k\right]_X} \right) \mathrm{d}\mu_X \xrightarrow{\text{monotone convergence theorem}} \sum_{k=1}^\infty \int_X \nu_{\left[\mathsf{E}_k\right]_X} \, \mathrm{d}\mu_X$ $=\sum_{k=1}^{\infty}(\mu\times\nu)_{E_k}$ **E.g.** $(\mu \times \nu)_{A \times B} = \mu_A \nu_B \ \forall (A, B) \in S \times T$

Iterated integrals 4.2

Theorem (Tonelli's)
$$\int_{X\times Y} f d(\mu \times \nu) = \int_{X} \underbrace{\int_{Y} f_{x,y} d\nu_{y}}_{\text{S-measurable on } X} d\mu_{x} = \int_{Y} \underbrace{\int_{X} f_{x,y} d\mu_{x}}_{\text{X-y}} d\nu_{y} \, \forall S \otimes \mathcal{T}$$

measurable $X \times Y \xrightarrow{f} \overline{\mathbb{R}}_{\geq 0}$ on σ -finite measure spaces (X, \mathbb{S}, μ) & (Y, \mathbb{T}, ν)

E.g. Consider $\mathbb{Z}_{>o} \times \mathbb{Z}_{>o} \xrightarrow{x:(j,k)\mapsto x_{j,k}} \overline{\mathbb{R}}_{\geq o}$ and σ -finite counting measure spaces

measurable $X \times Y \xrightarrow{f} \overline{\mathbb{R}}$ on σ -finite measure spaces $(X, S, \mu) \& (Y, T, \nu)$: $\int_{X\times Y} |f| \, d(\mu \times \nu) < \infty \text{ (and thus } \int_{Y} \left| f_{\forall x \in X, y} \right| \, d\nu_{y} < \infty > \int_{X} \left| f_{x, \forall y \in Y} \right| \, d\mu_{x})$ **4.5** $U_f := \{(x,t) \in X \times \mathbb{R}_{>0} \mid o < t < f_x\} \text{ is the region under the graph of } X \xrightarrow{t} \overline{\mathbb{R}}_{\geq 0}.$

[[]xvii]Recall that pointwise limit of S-measurable functions is S-measurable

Then measurable f on σ -finite measure space $(X, S, \mu) \Rightarrow U_f \in S \otimes \mathfrak{B}$ $\wedge (\mu \times \mathring{\mu})_{U_f} = \int_X f d\mu = \int_{\mathbb{R}_{>0}} \mu_{\{x \in X \mid t < f_x\}} d\mathring{\mu}_t \ \forall Lebesgue's measure space (\mathbb{R}_{>0}, \mathfrak{B}, \mathring{\mu}) \quad \blacksquare$

4.3 Lebesgue's integrals on \mathbb{R}^n

4.6
$$\times_{k=1}^2 G_k \subseteq \mathbb{R}^{\sum_{k=1}^2 n_k}$$
 is open \forall open $G_{k=1,2} \subseteq \mathbb{R}^{n_k}$

4.8 Borel's $B \subseteq \mathbb{R}^n$ is an element of the smallest σ -algebra on \mathbb{R}^n containing all open $G \subseteq \mathbb{R}^n$; denote the σ -algebra of all Borel's $B \subseteq \mathbb{R}^n$ by \mathfrak{B}_n

$$\textbf{4.7} \, \boldsymbol{\cdot} \, \boldsymbol{G} \subseteq \mathbb{R}^n \, \textit{is open} \Longleftrightarrow \boldsymbol{G} = \bigcup_{k \in \mathbb{Z}_{>0}} \boldsymbol{C}_k \, \textit{with} \, \boldsymbol{C}_{\forall \, k \in \mathbb{Z}_{>0}} \, \textit{open cubes} \subseteq \mathbb{R}^n.$$

•
$$\mathfrak{R}_n$$
 is the smallest σ -algebra on \mathbb{R}^n containing all open cubes $\subseteq \mathbb{R}^n$

4.8
$$\mathfrak{B}_{\nabla^2}$$
 $\mathfrak{g}_{\mathbb{R}} = \otimes_1^2$ $\mathfrak{B}_{\mathbb{R}}$

4.8 $\Re_{\sum_{k=1}^2 n_k} = \bigotimes_{k=1}^2 \Re_{n_k}$ **4.9** Define inductively Lebesgue's measure $\mathring{\mu}_n = \mathring{\mu}_{n-1} \times \mathring{\mu}_1$ on measurable spaces $(\mathbb{R}^n, \mathfrak{B}_n)$ with $\mathring{\mu}_1$ Lebesgue's measure on $(\mathbb{R}, \mathfrak{B}_1)$

4.9
$$\forall E \in \mathfrak{B}_n \ \forall t \in \mathbb{R}_{>0}, tE \in \mathfrak{B}_n \land \mathring{\mu}_{n;tE} = t^n \mathring{\mu}_{n;E}$$

4.10
$$D_1(D_2f) = D_2(D_1f) \ \forall G \xrightarrow{f} \mathbb{R} : \exists \textit{continuous} \ D_1f \& D_2f \& D_1(D_2f) \& D_2(D_1f)$$

on the open $G \subseteq \mathbb{R}^2$, where the **partial derivates** $(D_1 f)_{x,y} := \lim_{t \to 0} \frac{\left(f_{x+t,y} - f_{x,y}\right)}{t} &$

$$(D_2f)_{x,y} := \lim_{t \to o} \left(f_{x,y+t} - f_{x,y} \right) /_t \, \forall (x,y) \in G \, etc.$$

Riemann's integration

Riemann integral

A.1 A **partition** of $[a,b] \subseteq \mathbb{R}$ is a finite list $\{x_i\}_{i=0}^n$ with $a=x_0 < x_1 < \cdots < x_n = b$ Remark. Use the partition to think of $[a,b] = \bigcup_{i=1}^n [x_{i-1},x_i]$. **A.2** $\inf_A = \inf_A \& \sup_A = \sup_A \forall A \subseteq \text{domain of a real-valued map } f$

A.2
$$\inf_{A} = \inf_{A} \& \sup_{A} = \sup_{A} \forall A \subseteq \text{domain of a real-valued map f}$$

A.3 \forall bounded map $[a,b] \xrightarrow{f} \mathbb{R} \forall$ partition $P = \{x_i\}_{i=0}^n$ of [a,b], **Riemann's lower** & upper sums are

$$L_{f,P,[a,b]} = \sum_{i=1}^{n} (x_i - x_{i-1}) \inf_{[x_{i-1},x_i]} \& U_{f,P,[a,b]} = \sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{[x_{i-1},x_i]}$$

Remark. RIEMANN's sums approximate the signed area under f's graph.

A.1 \forall bounded map [a,b] $\stackrel{f}{\rightarrow} \mathbb{R} \forall$ partitions P, P' of [a,b] with the list defining P a subset of the list defining $P',\, L_{f,P,[a,b]} < L_{f,P',[a,b]} < U_{f,P',[a,b]} < U_{f,P,[a,b]}$

A.2
$$\forall bounded \ map \ [a,b] \xrightarrow{f} \mathbb{R} \ \forall \ partitions P, P' \ of \ [a,b], \ L_{f,P,[a,b]} \leq U_{f,P',[a,b]}$$

A.4 \forall bounded map $[a,b] \xrightarrow{f} \mathbb{R}$, **Riemann's lower & upper integrals** are

$$L_{f,[a,b]} := \sup_{P} L_{f,P,[a,b]} \quad \& \quad U_{f,[a,b]} := \inf_{P} U_{f,P,[a,b]}$$

A.3
$$\forall bounded map [a, b] \xrightarrow{f} \mathbb{R}, L_{f,[a,b]} \leq U_{f,[a,b]}$$

A.5 A bounded map on a closed bounded interval is Riemann integrable if its lower and upper Riemann integrals are equal. *E.g.* **Riemann's integral** $\int_a^b f = L_{f,[a,b]} = U_{f,[a,b]}$ of a Riemann integrable map $[a,b] \xrightarrow{f} \mathbb{R}$

Example A.1 $\forall [0,1] \xrightarrow{f:x \mapsto x^2} \mathbb{R} \ \forall P_n = \{i/n\}_{i=0}^n$

$$L_{f,P_n,[o,1]} = \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i-1}{n}\right)^2 = \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2},$$

$$U_{f,P_n,[0,1]} = \sum_{i=1}^n \frac{1}{n} \left(\frac{i}{n}\right)^2 = \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2};$$

$$U_{f,[o,1]} \leq \!\!\! \inf_{n \in \mathbb{Z}_{>o}} \!\!\! U_{f,P_n,[o,1]} = \boxed{\int_{o}^{1} f = \frac{1}{3}} = \!\!\! \inf_{n \in \mathbb{Z}_{>o}} \!\!\! L_{f,P_n,[o,1]} \leq L_{f,[o,1]}.$$

A.4 Every continuous real-valued map on a closed bounded interval (and thus the map is uniformly continuous) is Riemann integrable

A.5 \forall Riemann integrable map [a, b] $\stackrel{f}{\rightarrow} \mathbb{R}$,

$$(b-a)\inf_{[a,b]} \leq \int_a^b f \leq (b-a)\sup_{[a,b]}$$

RIEMANN's integral is not good enough

Riemann's integration does not

- handle maps with many discontinuities or maps unbounded

Example A.2
$$f_{x \in [0,1]} = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 has many discontinuities, and

$$\inf_{[a,b]} = o \neq 1 = \sup_{[a,b]} \overset{\forall [a,b] \subseteq [o,1]}{\longleftarrow} \ \exists \ r \in \left(\mathbb{R} \backslash \mathbb{Q} \right)^{\in [a,b]} \land \ \exists \ q \in \mathbb{Q}_{\in [a,b]}.$$

Thus $L_{f,P,[o,1]} = o \neq 1 = U_{f,P,[o,1]} \ \forall \ partition \ P \ of [o,1], \ L_{f,[o,1]} = o \neq 1 = U_{f,[o,1]}, \ and \ under unde$ $[0,1] \xrightarrow{t} \mathbb{R}$ not RIEMANN integrable.

Example A.3 $f_x = \begin{cases} 1/\sqrt{x} & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0 \end{cases}$ is unbounded, and $\sup_{f_{[x_0,x_1]}} = \infty \ \forall \text{ partition}$

 $P = \{x_i\}_{i=0}^n \Rightarrow U_{f,P,[0,1]} = \infty$ by definition. However, we may redefine $\int_0^1 f$ as $\lim_{a\downarrow o}\int_a^1 f$, for the area under f's graph is $\lim_{a\downarrow o}\left(\int_a^1 f=2-2\sqrt{a}\right)=2$. **Example A.4** Given a sequence $r_1,r_2,...$ that includes each $q\in\mathbb{Q}_{\in[0,1]}$ ex-

actly once but no other numbers, and $f_{k \in \mathbb{Z}_{>0}, x \in [0,1]} = \begin{cases} \sqrt[1]{\sqrt{x-r_k}} & \text{if } x > r_k \\ o & \text{if } x \le r_k, \end{cases}$ then

 $f_x = \sum_{k=1}^{\infty} f_{k,x}/_{2^k}$ is unbounded on every non-empty open subinterval $I \subseteq [0, 1]$ because $I \ni q \in \mathbb{Q}$, and f's Riemann integral is thus undefined on I, although the area (< 2) under f's graph seems reasonable.

Example A.5 RIEMANN's integration does not work well with pointwise limits.

E.g. given a sequence r_1, r_2, \ldots that includes each $q \in \mathbb{Q}_{\in [0,1]}$ exactly once but no other numbers, then each $f_{k \in \mathbb{Z}_{>0}, x \in [0,1]} = \begin{cases} 1 & \text{if } x \in \{r_i\}_{i=1}^k \text{ is Riemann integrable} \\ 0 & \text{otherwise} \end{cases}$ and $\int_0^1 f_k = o$. However, $f_x = \lim_{k \to \infty} f_{k;x} = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ o & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ is not Riemann integrable (cf. example A.2).

A.6 \forall sequence f_1, f_2, \ldots of Riemann integrable maps on [a, b] with $|f_{k \in \mathbb{Z}_{>0}, x \in [a, b]}|$ $\leq M \in \mathbb{R}$, $\int_a^b f = \lim_{k \to \infty} \int_a^b f_k if$

- 1. $\forall x \in [a,b] \exists f_x = \lim_{k \to \infty} f_{k,x}$
- 2. f is Riemann integrable on [a, b]

Remark. The undesirable hypothesis 2 and the difficulty in finding a simple RIEMANN-integration-based proof suggest that RIEMANN's integration is not the ideal integration theory.

Complete ordered fields B

B.1 A *field* is a set F with two binary operations symbolised as addition and multiplication: $\forall a \& b \& c \in \mathbb{F}$

Commutativity $a + b = b + a \wedge ab = ba$

Associativity
$$(a + b) + c = a + (b + c) \land (ab)c = a(bc)$$

Multiplicative distributivity over addition a(b + c) = ab + ac

Additive identity $\exists ! \mathbf{O}_{\mathbb{F}} \in \mathbb{F} : a + \mathbf{O} = a$

Multiplicative identity $\exists ! \mathbf{1}_{\mathbb{F}} \in \mathbb{F} : a\mathbf{1} = a$

Additive inverse $\exists ! -a \in \mathbb{F} : a + (-a) = \mathbf{O}$

Multiplicative inverse $\exists ! a^{-1} \in \mathbb{F} : aa^{-1} = \mathbf{1}$

Remark 2.
$$-(-a = -\mathbf{1} \cdot a) = a \stackrel{\neq \mathbf{0}}{===} (a^{-1})^{-1} \forall a \in \mathbb{F}.$$

E.g. The set \mathbb{Q} of rationals under usual addition and multiplication.

E.g. The set $\{0, 1\}$ under usual addition and multiplication except that 1 + 1 := 0.

B.1
$$\mathbf{aO} = \mathbf{O} \ \forall \mathbf{a} \in field \ \mathbb{F}$$

B.2 \forall a, b \in field \mathbb{F} , their

Difference a - b := a + (-b)

Quotient
$$a/b := ab^{-1}$$
 for $b \neq 0$

B. 3 A field \mathbb{F} is ordered if \exists positive $P \subset \mathbb{F}$:

•
$$a \in \mathbb{F} \Rightarrow a \in P \vee a = \mathbf{O} \vee -a \in P$$

• a & b
$$\in$$
 P \Rightarrow a + b \in P \land ab \in P

B.2 A positive $P \subset \text{ordered field } \mathbb{F}$ is closed under multiplicative inverse; i.e. $a^{-1} \in P$ $\forall a \in P, \text{ with } \mathbf{1} \in P$

B.4 \forall a & b \in ordered field $\mathbb{F} \supset$ positive P

•
$$a < b \iff b - a \in P \iff b > a$$

•
$$a \le b \iff a < b \lor a = b \iff b \ge a$$

Remark 3. $\mathbf{O} < b$ iff $b \in P$.

B.3 The ordering < on an ordered field $\mathbb F$ is **transitive**; i.e. $a < b < c \xrightarrow{\forall a,b,c \in \mathbb F} a < c \blacksquare$

B.5 The *absolute value*
$$|b| := \begin{cases} b & \text{if } b \geq \mathbf{O} \\ -b & \text{if } b < \mathbf{O} \end{cases}$$
 of $b \in \text{ordered field } \mathbb{F}$

Remark 4. $|b| \ge b, -b$.

B.4
$$|a+b| \le |a| + |b| \forall a \& b \in ordered field \mathbb{F}$$

B.5 Every ordered field $\mathbb{F} \supseteq \mathbb{Q}$; i.e. \exists injection^[xviii] $\mathbb{Q} \xrightarrow{\varphi} \mathbb{F}$, such that

$$\varphi_{\pm m/n} := (\underbrace{\pm \mathbf{1} \pm \cdots \pm \mathbf{1}}_{\text{m times}}) (\underbrace{\mathbf{1} + \cdots + \mathbf{1}}_{\text{n times}})^{-1} \stackrel{\text{m=o}}{=\!=\!=\!=} \mathbf{0} =: \varphi_o$$

$$\forall\,m\in\mathbb{Z}_{\geq 0}\coloneqq\{z\in\mathbb{Z}|z\geq o\}\,\forall\,n\in\mathbb{Z}_{>0}\text{, preserving all ordered field properties.}^{[xix]}$$

B.6
$$q^2 = 2 \Rightarrow q \notin \mathbb{Q}$$

B.6 b \in ordered field \mathbb{F} is an *upper bound* of $A \subseteq \mathbb{F}$ if $a \leq b \in \mathbb{F} \ \forall \ a \in A$

E.g. For both $\mathbb{Q}_{\leq 3}$ and $\mathbb{Q}_{\leq 3}$, every $b \in \mathbb{Q}_{\geq 3}$ is an upper bound, and 3 is the *least* upper bound.

Remark 5. A least upper bound of a set, if it exists, is unique.

Example B.1 $\mathbb{Q}_{<\sqrt{2}} = \{q \in \mathbb{Q} | q^2 < 2\}$ has no least upper bound $b \in \mathbb{Q}$. The idea is that

•
$$b \in \mathbb{Q}_{<\sqrt{2}} \Rightarrow \exists \, b' \, (= \left[b + {^{(2-b^2)}} \middle/_5 \right] \text{ for example}) \in \mathbb{Q}_{<\sqrt{2}} \text{ slightly bigger than } b$$

• $b \in \mathbb{Q}_{>\sqrt{2}} \Rightarrow \mathbb{Q}_{<\sqrt{2}}$ has an upper bound $(\left[b-{(b^2-2)}\!\!/_{\!\!2b}\right]$ for example) slightly smaller than b

[[]xviii] I.e. $\varphi_{m/n} = \varphi_{p/q} \xleftarrow{\forall m,n,p,q \in \mathbb{Z}_{>o}} m/n = p/q$

[[]xix] Viz., $\forall a \& b \in \mathbb{Q}$, $\varphi_{a+b} = \varphi_a + \varphi_b$, $\varphi_{ab} = \varphi_a \varphi_b$, $\varphi_a > o \iff a > o$ etc. (with $a \neq o$ for the multiplicative inverse condition)

• So
$$b = \sqrt{2} \notin \mathbb{Q}$$
.

B.7 An ordered field is complete if every its non-empty subset bounded above has a least upper bound; denote the field by \mathbb{R} and call it the field of *real numbers* **B.8** r̃ is **Dedekind's** cut if

 $\cdot \varnothing \subset \tilde{r} \subset \mathbb{Q}$

•
$$q \in \mathbb{Q}_{< r \in \tilde{r}} \Rightarrow q \in \tilde{r}$$

• r̃ has no largest element

Denote the set of all Dedekind's cuts by R *Remark* 6. Intuitively, $\tilde{r} = \mathbb{Q}_{< r} \approx r \in \mathbb{R} \approx \mathbb{R}$.

B.9 $S \setminus A := \{ s \in S \mid s \notin A \}$ is the **set difference** from A to S. If $A \subseteq S$, then $S \setminus A$ is A's complement in S

B.10 Make $\widetilde{\mathbb{R}}$ a field $\forall \widetilde{r}_{i=1,2} \in \widetilde{\mathbb{R}}$, $\widetilde{\mathbb{R}} \ni$

•
$$\sum_{i=1,2} \tilde{r}_i \coloneqq \left\{ \sum_{i=1,2} r_i \middle| r_{j=1,2} \in \tilde{r}_j \right\}$$

•
$$\tilde{o} := \mathbb{Q}_{< o}$$

$$\boldsymbol{\cdot} \ -\tilde{\boldsymbol{r}} := \left\{\boldsymbol{r} \in \mathbb{Q} \left| \left(\mathbb{Q} \backslash \tilde{\boldsymbol{r}}\right)^{<-\boldsymbol{r}} \neq \varnothing \right\} \right.$$

$$\tilde{\mathbf{r}}^+ := \tilde{\mathbf{r}}^{>o[\times \times]} \text{ and } \tilde{\mathbf{r}}^- := (\mathbb{Q} \backslash \tilde{\mathbf{r}})^{\leq o}$$

•
$$\tilde{1} := \mathbb{Q}_{<1}$$

$$\bullet \ \tilde{r}^{\scriptscriptstyle -1} := \left\{ r \in \mathbb{Q} \left| \left(\mathbb{Q} \backslash \tilde{r} \right)^{< r^{\scriptscriptstyle -1}} \neq \varnothing \right\} \right.$$

 $\textit{Make field $\widetilde{\mathbb{R}}$ ordered} \quad \text{define $\widetilde{r} \in \widetilde{\mathbb{R}}$ to be $\textit{positive}$ if $\exists b \in \widetilde{r} : b > o^{[xxi]}$}$ **B.7** The ordered field $\widetilde{\mathbb{R}}$ is complete; i.e. $\varnothing \subset \widetilde{\mathbb{R}} \subset \widetilde{\mathbb{R}} \wedge \widetilde{\mathbb{R}}$ bounded above $\Rightarrow \widetilde{\mathbb{R}}$ has a least *upper bound* $\bigcup_{\tilde{r} \in \tilde{R}} \tilde{r}$

Supremum & infimum

Property (Archimedian) $\forall r \in \mathbb{R} \exists z \in \mathbb{Z}_{>0} : r < z$. *I.e.* $\forall r \in \mathbb{R}^{>0} \exists z \in \mathbb{Z}_{>0} : z^{-1} < r$

C.1 $\forall a \in \mathbb{R}^{< b \in \mathbb{R}} \, \exists \, q \in \mathbb{Q}_{\in (a,b)}$

C.1 $b \in \mathbb{R}$ is a *lower bound* of $A \subseteq \mathbb{R}$ if $b \le a \ \forall \ a \in A$

E.g. For both $\mathbb{R}^{>3}$ and $\mathbb{R}^{\geq3}$, every $b \in \mathbb{R}^{\leq3}$ is a lower bound, and 3 is the **greatest** lower bound.

Remark 7. A greatest lower bound of $A \subseteq \mathbb{R}$, if it exists, is unique.

C.2 Every non-empty $A \subseteq \mathbb{R}$ bounded below has a greatest lower bound

C.2 $\forall A \subseteq \mathbb{R}$, its **supremum** & **infimum** are respectively

$$A \subseteq \mathbb{R}$$
, its *supremum* & *infimum* are respectively
$$\sup_{A} := \begin{cases} A's \text{ least upper bound} & \text{if } A \text{ bounded above } \land A \neq \emptyset \\ \infty & \text{if } A \text{ has no upper bound} \\ -\infty & \text{if } A = \emptyset \end{cases}$$

Think of the condition $\tilde{r}^+ \neq \varnothing$ as equivalent to $\tilde{r} > \tilde{o}$

 $[\]tilde{r}_1 \subset \tilde{r}_2 \Longleftrightarrow \tilde{r}_1 < \tilde{r}_2 \overset{\text{definition}}{\longleftrightarrow} (\tilde{r}_2 - \tilde{r}_1) \text{ positive}$

```
 \& \inf_{A} := \begin{cases} A's \text{ greatest lower bound} & \text{if } A \text{ bounded below } \land A \neq \emptyset \\ -\infty & \text{if } A \text{ has no lower} \end{cases}
```

C.3 $r \in \mathbb{R}$ is *irrational* if $r \notin \mathbb{Q}$; *i.e.* $r \in \mathbb{R} \setminus \mathbb{Q}$

C.3
$$\exists r \in \mathbb{R}^{>0} : r^2 = 2$$
. I.e. $\exists r = \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$

C.4
$$\forall a \in \mathbb{R}^{\langle b \in \mathbb{R}} \exists r \in (\mathbb{R} \setminus \mathbb{Q})^{\in (a,b)}$$

$$C.4(-\infty,\infty) := \mathbb{R}$$
, with

• the ordering > on \mathbb{R} extended to $[-\infty, \infty] := \mathbb{R} \cup \{\pm \infty\}$ as

$$- a < \infty \ \forall a \in [-\infty, \infty) := \mathbb{R} \cup \{-\infty\}$$

$$- -\infty < a \ \forall \ a \in (-\infty, \infty] := \mathbb{R} \cup \{\infty\}$$

•
$$\forall a, b \in [-\infty, \infty]$$

$$-a < b \iff b > a$$

$$- a \le b \iff a < b \lor a = b \iff b \ge a$$

C.5
$$I \in [-\infty, \infty]$$
 is an *interval* if $(a, b) \subseteq I \ \forall a, b \in I$

 $\vee [a,b] \vee (a,b] \vee [a,b)$

Open & closed subsets of Rⁿ D

 $\textbf{\textit{D.1}} \ \mathbb{R}^n \coloneqq \big\{ \big(x_{_1}, \ldots, x_{_n} \big) \equiv \big(x_i \big)_{i=1}^n \big| x_{j=1,\ldots,n} \in \mathbb{R} \big\} \ \text{is the set of all ordered n-tuples of real}$ numbers

D.2
$$\forall x = (x_i)_{i=1}^n \in \mathbb{R}^n, \|x\| := \sqrt{\sum_{i=1}^n |x_i|^2}, \|x\|_{\infty} := \max\{|x_i|\}_{i=1}^n$$

D.2 $\forall x = (x_i)_{i=1}^n \in \mathbb{R}^n$, $\|x\| := \sqrt{\sum_{i=1}^n |x_i|^2}$, $\|x\|_{\infty} := \max\{|x_i|\}_{i=1}^n$ **D.3** A sequence $a_1, a_2, \dots \in \mathbb{R}^n$ converges to a limit $L = \lim_{k \to \infty} a_k$ if $\forall \epsilon > 0$ $\exists m \in \mathbb{Z}_{>o} : \|a_{\forall k \geq m} - L\|_{\infty} < \epsilon$

$$\textit{Remark 8. } \lim_{k \to \infty} a_k = L \xleftarrow{\text{definition D.}_3} \lim_{k \to \infty} \left\| a_k - L \right\|_{\infty} = o$$

D.1 A convergent sequence $a_1, a_2, \dots \in \mathbb{R}^n$ converges i.e. $\lim_{k\to\infty} \left(a_k = \left(a_{k,j}\right)_{j=1}^n\right) = L = \left(L_j\right)_{j=1}^n iff \lim_{k\to\infty} a_{k,\forall j\in\{i\}_{i=1}^n} = L_j$ coordinate-wise;

D.4
$$\forall x \in \mathbb{R}^n \ \forall \delta > 0$$
, the *open cube* $\mathbb{B}_{x,\delta} := \{ y \in \mathbb{R}^n | \|y - x\|_{\infty} < \delta \}$

D.5 An *open interval*
$$I = (a, b) \subseteq \mathbb{R}$$
 for some $a, b \in [-\infty, \infty]$

D.6 $X \subseteq \mathbb{R}^n$ is

$$\textit{Open} \quad \text{if } B_{\forall x \in X, \exists \, \delta > o} \subseteq X$$

Closed if its complement in \mathbb{R}^n is open

Remark 9. Instead of open cubes, open sets could have been equivalently defined using open balls $\{y \in \mathbb{R}^n | \|y - x\| < \delta\} \subseteq B_{x,\delta} \subseteq \{y \in \mathbb{R}^n | \|y - x\| < \sqrt{n}\delta\}.$

D.7 \forall collection \mathcal{A} of a set S's subsets, the **union** $\bigcup_{E \in \mathcal{A}} E := \{x \in S | \exists E \in \mathcal{A} : x \in E\}$ and the *intersection* $\bigcap_{E \in \mathcal{A}} E := \{x \in S | x \in E \ \forall E \in \mathcal{A}\}$

E.g.
$$\bigcup_{k=1}^{\infty} [1/k, 1-1/k] = (0, 1), \bigcap_{k=1}^{\infty} (-1/k, 1/k) = \{0\}.$$

D.2 The union of every collection of open subsets of \mathbb{R}^n is open in \mathbb{R}^n ; so as the intersection of every finite collection of open subsets of \mathbb{R}^n

D.8 A set C is *countable* if $C = \emptyset \lor C = \{c_1, c_2, \dots\}$ for some sequence c_1, c_2, \dots of elements of C

Remark. Every finite set is countable. If C is infinite countable, then it can be written as $\{b_1, b_2, ...\}$ of distinct elements.

D.3 Q is countable

Proof. Start with the list $\{-1,0,1\}$ at step 1, adjoin to the list in increasing order the rationals $\in [-n,n]$ that can be written in the form m/n for some $m \in \mathbb{Z}$ at step n, and continue in this fashion to produce a sequence containing each rational

D.9 A sequence E_1, E_2, \dots of sets is *disjoint* if $E_{\forall j \neq k} \cap E_k = \emptyset$

D.4 $A \subseteq \mathbb{R}$ open iff A the countable disjoint union of open intervals

D.5 $A \subseteq \mathbb{R}^n$ closed iff $A \ni limit$ of every convergent sequence of elements of A

Laws (DE MORGAN'S) \forall collection \mathcal{A} of subsets of some set X, $X \setminus \bigcup_{E \in \mathcal{A}} E = \bigcap_{E \in \mathcal{A}} (X \setminus E)$, $X \setminus \bigcap_{E \in \mathcal{A}} E = \bigcup_{E \in \mathcal{A}} (X \setminus E)$

D.6 The intersection of every collection of closed subsets of \mathbb{R}^n is closed in \mathbb{R}^n ; so as the union of every finite collection of closed subsets of \mathbb{R}^n

D.7 The only subsets of \mathbb{R}^n that are both open and closed are \emptyset and \mathbb{R}^n

E Sequences & continuity

E.1 A sequence $a_1, a_2, \dots \in \mathbb{R}$ is

Increasing if $a_{\forall k \in \mathbb{Z}_{>0}} \leq a_{k+1}$

Decreasing if $a_{\forall k \in \mathbb{Z}_{>0}} \geq a_{k+1}$

Monotone if it is either increasing or decreasing

E.2 • $A \subseteq \mathbb{R}^n$ is *bounded* if $\sup \{\|a\|_{\infty}\}_{a \in A} < \infty$

• A map into \mathbb{R}^n is **bounded** if its range is a bounded subset of \mathbb{R}^n . Particularly, a sequence $a_1, a_2, \dots \in \mathbb{R}^n$ is bounded if $\sup \left\{ \left\| a_k \right\|_{\infty} \right\}_{k \in \mathbb{Z}_{> n}} < \infty$

E.1 Every bounded monotone sequence of real numbers converges

E.3 a_{k_1} , a_{k_2} , ..., with $k_{i=1,2,...} \in \mathbb{Z}_{>0}$ and $k_1 < k_2 < \cdots$, is a *subsequence* of a sequence a_1, a_2, \ldots

E.2 Every sequence of real numbers has a monotone subsequence

E.3 (BOLZANO-WEIERSTRASS'S) Every bounded sequence in \mathbb{R}^n has a convergent subsequence

E.4 Every sequence of elements of a closed bounded $F \subseteq \mathbb{R}^n$ has a subsequence that converges to an element of F

E.4 $A \stackrel{f}{\rightarrow} \mathbb{R}^n \ \forall A \subseteq \mathbb{R}^m \ \text{is continuous}$

 $\mathbf{A}\mathbf{t}\,\mathbf{b}\in\mathbf{A}\quad \mathrm{if}\,\forall\,\varepsilon>\mathrm{o}\,\forall\,\mathbf{a}\in\mathbf{A}\,\exists\,\delta>\mathrm{o}:\|\mathbf{a}-\mathbf{b}\|_{\infty}<\delta\Rightarrow\|\mathbf{f}_{\mathsf{a}}-\mathbf{f}_{\mathsf{b}}\|_{\infty}<\varepsilon$

On A if it is continuous at every $b \in A$

E.5 $A \xrightarrow{f} \mathbb{R}^n \ \forall A \subseteq \mathbb{R}^m \ \text{is continuous at } b \in A \ \text{iff } f_{b_k} \xrightarrow{k \to \infty} f_b \ \forall \text{sequence } b_{k=1,2,\dots} \in A \ \text{that converges at } b$

Example E.1 $\mathbb{R} \xrightarrow{\text{f:x} \mapsto x^2} \mathbb{R}$ is continuous but not uniformly continuous.

E.6 Every continuous \mathbb{R}^n -valued map on a closed bounded subset of \mathbb{R}^m is uniformly continuous

E.7 Every continuous real-valued map of a closed bounded subset of \mathbb{R}^m attains its max-

imum and minimum

E.6 $\forall S \stackrel{f}{\rightarrow} T$ between sets S and T, $f_X := \{f_x\}_{x \in X}$ is the **image** of $X \subseteq S$ under f

E.8 A continuous $F \xrightarrow{f} \mathbb{R}^n$ of a closed bounded $F \subseteq \mathbb{R}^m$ is a closed bounded subset of \mathbb{R}^n